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What is machine learning (ML)?

• Subfield of artificial intelligence (AI)
“AI is a field concerned with intelligent behavior in artifacts.” 

– Nilsson 1998

• AI is not a thing/object.
• The thing/object using AI methods is called an agent.

• Agent: Something that acts, from Latin agere, which means “to do.”
• E.g., a robot or software program

Like math, physics or theology

agents



ML is a subfield of AI

• ML is a subfield of AI “concerned with the question of how to 
construct computer programs that automatically improve with 
experience.” [Tom Mitchell, 1997]

• Improve = learn
• Experience = data
• Computer = unnecessary

AI

ML

1950s – 1980s

AI
ML

2000s – present



Data & Supervised Learning

• Different subfields of ML assume access to different kinds of data.
• During the first part of the course, we will focus on supervised 

learning problems.
• These are problems where the data is a set of points, and so it is 

called a data set or dataset.
• Each point consists of a pair of inputs and outputs.
• Given a data set of such input-output pairs, a supervised learning 

algorithm learns to predict the output given the input, even for 
points not in the data set.



Data Set Notation

• 𝑋𝑋: Input (also called features, attributes, covariates, or 
predictors)

• Typically, 𝑋𝑋 is a vector, array, or list of numbers or strings.
• 𝑌𝑌: Output (also called labels or targets)

• Typically, 𝑌𝑌 is a single number or string.
• An input-output pair is (𝑋𝑋,𝑌𝑌).
• Let 𝑛𝑛, called the data set size or size of the data set, be the 

number of input-output pairs in the data set.
• Let 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖  denote the 𝑖𝑖th input output pair.
• The complete data set is 

𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 𝑖𝑖=1
𝑛𝑛 = 𝑋𝑋1,𝑌𝑌1 , 𝑋𝑋2,𝑌𝑌2 , … , 𝑋𝑋𝑛𝑛,𝑌𝑌𝑛𝑛 .



Feature Types

• Numerical
• Continuous: Features that can take any value in a range, like temperature or 

velocity.
• Discrete: Features that take a countable number of distinct values, like the 

number of cats a person owns. (Binary features are a special case.)
• Categorical (discrete, but not numbers)

• Nominal: Unordered categories like colors (red, green, blue) or genre (drama, 
comedy, science fiction, etc.).

• Ordinal: Categories with a specific order like educational level (high school, 
bachelor’s, master’s) or military rank (private, specialist, corporal, etc.)

• Text/String
• Image
• Other



Feature Types

• Non-numerical features are often converted into numerical 
features to make them easier to work with.

• Categorical features map to integers: “Sunday”0, “Monday”1, 
“Tuesday”2, etc.

• Images can be converted to sequences of (r,g,b) values describing each 
pixel.

• Text can be converted to discrete or continuous features
• Discrete: Each word (or part of a word) maps to a unique integer.

• Each basic unit of text (word, character, or subword) is called a token.
• Continuous: Each word can be mapped to a vector of real numbers. This is called a 

word embedding. Ideally, similar words are mapped to similar vectors of numbers. 
Word embeddings are themselves learned from data.



Regression and Classification

• Within supervised learning, recall that a data set is a set of input-
output pairs (X, Y).

• Regression: 𝑌𝑌 is a continuous number.
• Multivariate Regression: 𝑌𝑌 is a vector. That is, 𝑌𝑌 ∈ ℝ𝑚𝑚 and 𝑚𝑚 > 1.

• Classification: 𝑌𝑌 is categorical (mapped to an integer).
• Binary Classification: 𝑌𝑌 ∈ 0,1  or 𝑌𝑌 ∈ −1,1 .
• Multi-Class Classification: 𝑌𝑌 ∈ 0,1, … ,𝑘𝑘 .



Nearest Neighbor

• A particularly simple yet effective ML algorithm based on the core idea:
 When presented with a query, find the data point (row) that is 

most similar to the query and give the label associated with 
this most-similar point as the prediction.

• We can map this to fit/predict functions:
• fit: Store the data
• predict: For each query row do the following

• Loop over each row in the training data, computing the Euclidean distance between the 
query and the row.

• Create an array holding the labels from the rows with the smallest distance to the query 
feature vector (often just one element).

• Return an arbitrary (e.g., random) element of the array.



Evaluation Metrics (Regression)

• Mean Error: 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖

• Rarely what you want.
• Allows positive and negative errors to cancel each other out.

• Mean Squared Error (MSE): 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

• Very common choice.
• Gives a higher weight to larger errors, making it sensitive to outliers. It’s 

useful when large errors are particularly undesirable.

• Root Mean Squared Error (RMSE): MSE
• Has the same units as the target variable (unlike MSE).



Evaluation Metrics (Regression, cont.)

• Mean Absolute Error (MAE): 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖

• Like MSE, but with less emphasis on outliers.

• R-squared (𝑅𝑅2): 1 − ∑𝑖𝑖=1
𝑛𝑛 𝑦𝑦𝑖𝑖− �𝑦𝑦𝑖𝑖 2

∑𝑖𝑖=1
𝑛𝑛 𝑦𝑦𝑖𝑖− �𝑦𝑦 2 , where �𝑦𝑦 = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖  .

• Also called the coefficient of determination.
• Indicates the proportion of the variance of the dependent variable (labels) 

that is predictable from the independent variables (predictions).
• Larger is better (maximum possible is one).



𝑘𝑘-Nearest Neighbors (k-NN)

• Idea: Average the labels of the 𝑘𝑘 nearest points
• Pseudocode:

• Find the 𝑘𝑘 nearest neighbors to the query point.
• Called the “nearest neighbors”
• If you will run many queries, consider using a data structure like a KD-Tree to find the nearest neighbors

• Set the prediction to be the average label of these 𝑘𝑘 nearest neighbors.

• Code:

Hyperparameter, 
default value 𝑘𝑘 = 3



Weighted 𝑘𝑘-Nearest Neighbor

• Let 𝑥𝑥𝑖𝑖𝑁𝑁𝑁𝑁 ,𝑦𝑦𝑖𝑖𝑁𝑁𝑁𝑁  be the 𝑖𝑖th nearest neighbor
• Let 𝑤𝑤𝑖𝑖  be the weight associated with this point

• We consider only non-negative weights: 𝑤𝑤𝑖𝑖 ≥ 0.
• We describe how 𝑤𝑤𝑖𝑖  can be computed on future slides.

• Weighted 𝑘𝑘-NN predicts the label:

�𝑦𝑦 =
∑𝑖𝑖=1𝑘𝑘 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁𝑁𝑁

∑𝑗𝑗=1𝑘𝑘 𝑤𝑤𝑗𝑗
 

• This is equivalent to:

�𝑦𝑦 = �
𝑖𝑖=1

𝑘𝑘
𝑤𝑤𝑖𝑖

∑𝑗𝑗=1𝑘𝑘 𝑤𝑤𝑗𝑗
𝑦𝑦𝑖𝑖𝑁𝑁𝑁𝑁

Why do we divide by the sum of the 
weights?
• So that the weights sum to one.
• This keeps the prediction at the same 

“scale” as the labels.
• Example: If 𝑘𝑘 = 2, 𝑤𝑤1 = 1 and 𝑤𝑤2 = 1, 

and the division by the sum of weights 
is dropped.

• The prediction is 2 ×  too big!
• Dividing by the sum of the weights 

makes this a weighted average.



Gaussian Kernel
• The re-scaled probability density function (PDF) of a normal distribution.

• PDF of a normal distribution

𝑓𝑓 𝑥𝑥 =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒−

𝑥𝑥−𝜇𝜇 2

2𝜎𝜎2

• Mean 𝜇𝜇 = 0
• Standard deviation 𝜎𝜎 (a hyperparameter)

• Normalizing the weights makes the constant 1
𝜎𝜎 2𝜋𝜋

 cancel out in each weight. 
Hence:

𝑤𝑤𝑖𝑖 = 𝑒𝑒−
𝑥𝑥2
2𝜎𝜎2

• We use 𝑥𝑥 = dist 𝑥𝑥𝑖𝑖𝑁𝑁𝑁𝑁 , 𝑥𝑥query  giving:

𝑤𝑤𝑖𝑖 = 𝑒𝑒−
dist 𝑥𝑥𝑖𝑖

𝑁𝑁𝑁𝑁,𝑥𝑥query
2

2𝜎𝜎2



Tuning Hyperparameters

• How should we set 𝑘𝑘 and 𝜎𝜎?
• Idea: Enumerate a “grid” of possible values.

• Try all possible combinations of values of 𝑘𝑘 in k_values and 𝜎𝜎 
in sigma_values.

• If plotted as points where the horizontal axis is 𝑘𝑘 and the vertical is 𝜎𝜎 (or 
vice versa), the points would form a grid.

• Hence, called “Grid Search”
• Select the values that result in the best evaluation



Tuning Hyperparameters

• Grid search is common due to its simplicity.
• Research suggests that randomized searches may be more 

principled.
• Randomly sample each hyperparameter from some distribution
• Typically run for some fixed number of hyperparameter settings



Train/Validation/Test Sets

• Validation sets are often used to automatically tune 
hyperparameters.

• The data is split into three sets: train, evaluation, and test. The 
following procedure is then used:

• For each hyperparameter setting:
• Train a model using the training data.
• Evaluate the model using the validation data.

• Select the hyperparameter settings that achieve the best evaluation on 
the validation set.

• Train a model using all the training and validation data and the 
hyperparameters that achieved the best evaluation.

• Evaluate the model using the testing set.



Classification with NN-Variants

• NN: No changes needed!
• k-NN: The predicted label comes from a majority vote of the k 

nearest neighbors.
• Weighted k-NN: Each neighbor’s vote is weighted in the vote.



Mean Squared Error (revisited)

• The MSE is:
MSE = 𝐄𝐄 𝑌𝑌 − �𝑌𝑌𝑖𝑖

2 .
• This is a parameter or population statistic.

• The sample MSE is:

�MSE𝑛𝑛 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖
2  or 

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖 2 .

• This is a statistic or sample statistic.
• The “hat” means “an estimate” and the 𝑛𝑛-subscript indicates it is computed 

from 𝑛𝑛 samples.
• Our goal is typically to optimize a parameter.

• We don’t know this parameter’s value.
• In an attempt to achieve this goal, we use sample statistics.

• We can compute sample statistics from data!



Confidence Interval

• We will use the number of samples and their variance to construct a 
confidence interval for the parameter (e.g., MSE) based on the sample 
statistic (sample MSE).

• A confidence interval is an interval (range of numbers) that contains a 
parameter with a specified confidence, 1 − 𝛿𝛿.

• If [𝐿𝐿,𝑈𝑈] is a 1 − 𝛿𝛿 confidence interval for the mean 𝜇𝜇, then
Pr 𝐿𝐿 ≤ 𝜇𝜇 ≤ 𝑈𝑈 ≥ 1 − 𝛿𝛿.

• Question: What is random in this statement of probability?
• Answer: The confidence interval is random! It is typically computed 

from data. Different samples of data result in different lower and upper 
bounds.



Standard Error
• One common way to obtain a confidence interval is using standard error.
• Let 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 be a sequence of 𝑛𝑛 numbers.
• Let 𝜎𝜎 be the sample standard deviation of this sequence (with Bessel’s 

correction):

𝜎𝜎 =
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − �̅�𝑥 2

𝑛𝑛 − 1
,

�̅�𝑥 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

 𝑥𝑥𝑖𝑖

• The standard error is then
SE =

𝜎𝜎
𝑛𝑛

.



Using Standard Error

• If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 are 𝑛𝑛 random variables and:
• The random variables are i.i.d. with mean 𝜇𝜇.
• The random variables are each normally distributed.
• �𝑋𝑋 = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖  is the sample mean.

• Then �𝑋𝑋 − 1.96 × SE, �𝑋𝑋 + 1.96 × SE  is a 95% confidence interval 
for 𝜇𝜇. 

• That is:
Pr �𝑋𝑋 − 1.96 × SE ≤ 𝜇𝜇 ≤ �𝑋𝑋 + 1.96 × SE ≥ 0.95.



Mean Squared Error (re-revisited)

• MSE: MSE = 𝐄𝐄 𝑌𝑌 − �𝑌𝑌𝑖𝑖
2 .

• Sample MSE: �MSE𝑛𝑛 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖

2 .

• Let 𝑍𝑍𝑖𝑖 = 𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖
2

.
• Notice that 𝜇𝜇 = 𝐄𝐄 𝑍𝑍𝑖𝑖 = MSE, and let SE be the standard error of 
𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑛𝑛.

• So, �MSE𝑛𝑛 ± 1.96 × SE is a 95% confidence interval for the actual 
MSE (under normality assumptions).

• Although normality assumptions often false, this gives a rough idea of 
how much the sample MSE can be trusted.



We can be somewhat confident that the model learned by NN is worse than the 
model learned by k-NN (𝑘𝑘 = 100) and weighted k-NN (𝑘𝑘 = 110,𝜎𝜎 = 90).

We cannot be confidence about k-NN vs weighted k-NN.

Note: Always check for the meaning of the ± value! Standard error, standard 
deviation, and confidence intervals all have very different meanings!

±1.96 × SE



Model Evaluation (Review)

• Often ML texts evaluate models by doing the following:
• Partition the data into train/test.
• Train the model on the training data.
• Evaluate the model on the testing data.
• Report a performance metric and a number representing the uncertainty 

in this performance metric.
• Format: performance ±uncertainty



Algorithm Evaluation (Ideal)
In practice, we can’t do 
this step!



Cross-Validation

• Idea: Repeatedly define different parts of the data set to be training and 
testing data.

• Different training sets result in different models.
• The testing set for each model will always be independent of the data used to 

train the model.
• To do this, we will split the data 𝐷𝐷 into 𝑘𝑘 equally-sized subsets.

• Each of these subsets is called a fold.
• This 𝑘𝑘 is not related to the 𝑘𝑘 in nearest neighbor.

• We will train on all but one fold and test on the held-out fold.
• These individual evaluations on test sets containing one fold have high variance!
• We can average these high-variance evaluations to obtain a better estimate of 

performance.



Entire Data Set

𝑘𝑘 folds



Entire Data Set

𝑘𝑘 folds

Test Train

𝑃𝑃1

Performance
Prediction

𝑃𝑃2

𝑃𝑃3

Repeat for 𝑃𝑃1, … ,𝑃𝑃𝑘𝑘 Performance Estimate = mean(𝑃𝑃1, … ,𝑃𝑃𝑘𝑘) Uncertainty quantification = SE(𝑃𝑃1, … ,𝑃𝑃𝑘𝑘)



K-Fold Cross-Validation Pseudocode



Leave-One-Out (LOO) Cross-Validation

• The number of folds equals the number of points in the data set.
• Each test set contains only a single point!
• Provides the best estimates of performance.
• Often too computationally intensive to perform.



Linear Regression

• Search for the line that is a best fit to the data.
• Different performance measures correspond to different ways of 

measuring the quality of a fit.
• Sample mean squared error, or the sum of the squared errors is 

particularly common:
�MSE𝑛𝑛: 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2 and SSE: ∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2 

• Although not identical, the line that minimizes one also minimizes the 
other.

• Using sample MSE, this method is called “least squares linear 
regression.”



Linear Regression: What is a line?

𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏

�𝑦𝑦 = 𝑤𝑤1𝑥𝑥𝑖𝑖 + 𝑤𝑤2

Prediction, �𝑦𝑦𝑖𝑖 Input, 𝑥𝑥𝑖𝑖Slope, 𝑚𝑚 y-intercept, 𝑏𝑏

“weights,” or “parameters”, 𝑤𝑤 = 𝑤𝑤1,𝑤𝑤2



Models (Review)

• A model is a mechanism that maps input data to predictions.
• ML algorithms take data sets as input and produce models as 

output.

ML Algorithm Model

Data Set

Query

Prediction

A query can be one or more feature vectors.

Predictions are given for 
each feature vector in the 
query.



Parametric Model

• A model “parameterized” by a weight vector 𝑤𝑤.
• Different settings of 𝑤𝑤 result in different predictions.
• Let �𝑦𝑦 =  𝑓𝑓𝑤𝑤 𝑥𝑥

• 1-dimensional linear case:
𝑓𝑓𝑤𝑤(𝑥𝑥) = 𝑤𝑤1𝑥𝑥 + 𝑤𝑤2

• 𝑑𝑑-dimensional linear case:
𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = 𝑤𝑤1𝑥𝑥𝑖𝑖,1 + 𝑤𝑤2𝑥𝑥𝑖𝑖,2 +  … + 𝑤𝑤𝑑𝑑𝑥𝑥𝑖𝑖,𝑑𝑑

• We can write this as:

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = �
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗  𝑥𝑥𝑖𝑖,𝑗𝑗 .

• This is called a dot product and can be written as 𝑤𝑤 ⋅ 𝑥𝑥𝑖𝑖  or 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖.



Linear Regression: Optimization Perspective
• Given a parametric model 𝑓𝑓𝑤𝑤  of any form how can we find the weights 𝑤𝑤 that 

result in the “best fit”?
• Let 𝐿𝐿 be a function called a loss function.

• It takes as input a model (or model weights 𝑤𝑤)
• It also takes as input data 𝐷𝐷
• It produces as output a real-number describing how bad of a fit the model is to the 

provided data.
• The evaluation metrics we have discussed can be viewed as loss functions. 

For example, the sample MSE loss function is:

𝐿𝐿 𝑤𝑤,𝐷𝐷 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖
2

• We phrase this as an optimization problem:
argmin𝑤𝑤 𝐿𝐿(𝑤𝑤,𝐷𝐷) 

For the sample MSE loss 
function, this can be any 
parametric model, not 
just a linear one!



Linear Regression: Optimization Perspective

argmin𝑤𝑤 𝐿𝐿(𝑤𝑤,𝐷𝐷)
• Recall: argmin returns the 𝑤𝑤 that achieves the minimum value of 
𝐿𝐿(𝑤𝑤,𝐷𝐷), not the minimum value of 𝐿𝐿(𝑤𝑤,𝐷𝐷) itself.

• This expression describes a massive range of ML methods.
• Supervised, unsupervised, (batch/offline) RL
• Deep neural networks
• Large language models and generative AI

• Different problem settings and algorithms in ML correspond to:
• Different loss functions
• Different parametric models.
• Different algorithms for approximating the best weight vector 𝑤𝑤.



Linear Parametric Model ≠Linear Functions

• Linear parametric functions are functions 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖  that are linear functions 
of the weights 𝒘𝒘.

• They need not be linear functions of the input 𝑥𝑥𝑖𝑖.

Input 𝑥𝑥𝑖𝑖
Feature 

generator 𝜙𝜙

Note: The input 𝑥𝑥𝑖𝑖  is 
a vector – an array 
of values.

Feature 1: 
𝜙𝜙1 𝑥𝑥𝑖𝑖

Feature 2: 
𝜙𝜙2 𝑥𝑥𝑖𝑖

Feature m: 
𝜙𝜙𝑚𝑚 𝑥𝑥𝑖𝑖

…

Each feature is a real number 
(not a vector or array)

Linear Regression:
𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = 𝑤𝑤1𝜙𝜙1 𝑥𝑥𝑖𝑖 + 𝑤𝑤2𝜙𝜙2 𝑥𝑥𝑖𝑖 + ⋯

Prediction, �𝑦𝑦𝑖𝑖

Note: This is equivalent to pre-processing the data, 
converting 𝑥𝑥𝑖𝑖  (length 𝑑𝑑) into 𝜙𝜙 𝑥𝑥𝑖𝑖   (length 𝑚𝑚)

Note: Each feature can depend on more than one 
element of 𝑥𝑥𝑖𝑖. So, this is 𝜙𝜙1 𝑥𝑥𝑖𝑖  not 𝜙𝜙1 𝑥𝑥𝑖𝑖,1 .



Linear Parametric Model ≠Linear Functions

• Linear parametric functions are functions 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖  that are linear 
functions of the weights 𝒘𝒘.

• They need not be linear functions of the input 𝑥𝑥𝑖𝑖.
• That is, a linear parametric model has the form:

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = �
𝑗𝑗=1

𝑚𝑚

𝑤𝑤𝑗𝑗𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 ,

where 𝜙𝜙 takes the input vector 𝑥𝑥𝑖𝑖  as input and produces a vector of 𝑚𝑚 
features as output. That is, 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖  is the 𝑗𝑗th feature output by 𝜙𝜙.
• 𝜙𝜙 is called the basis function, feature generator, or feature mapping 

function. 



Multivariate Polynomial Basis

• How does the polynomial basis, 𝜙𝜙, work if 𝑥𝑥 is multidimensional (an array 
rather than a number?)

• Multivariate polynomial on inputs 𝑥𝑥,𝑦𝑦:
𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐𝑦𝑦 + 𝑑𝑑𝑥𝑥𝑦𝑦 + 𝑒𝑒𝑥𝑥2 + 𝑓𝑓𝑦𝑦2 + 𝑔𝑔𝑥𝑥𝑦𝑦2 + ℎ𝑥𝑥2𝑦𝑦 + 𝑖𝑖𝑥𝑥3 + ⋯

• Multivariate polynomial on input 𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2:
𝑤𝑤1 + 𝑤𝑤2𝑥𝑥𝑖𝑖,1 + 𝑤𝑤3𝑥𝑥𝑖𝑖,2 + 𝑤𝑤4𝑥𝑥𝑖𝑖,1𝑥𝑥𝑖𝑖,2 + 𝑤𝑤5𝑥𝑥𝑖𝑖,12 + 𝑤𝑤6𝑥𝑥𝑖𝑖,22 + 𝑤𝑤7𝑥𝑥𝑖𝑖,1𝑥𝑥𝑖𝑖,22 + 𝑤𝑤8𝑥𝑥𝑖𝑖,12 𝑥𝑥𝑖𝑖,22 + 𝑤𝑤9𝑥𝑥𝑖𝑖,13 + ⋯

• The expression above is 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖  for a linear parametric model using the 
multivariate polynomial basis.

• Notice that some 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖  terms depend on more than one element of 𝑥𝑥𝑖𝑖!
• This term is 𝑤𝑤8𝜙𝜙8 𝑥𝑥𝑖𝑖



Fourier Basis

• Each 𝜙𝜙𝑗𝑗  is a cosine function with a different period.
• Can optionally include both sine and cosine functions.

• Univariate:
• 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 = cos(𝑗𝑗𝜋𝜋𝑥𝑥)

• Approximation of a step function (from Wikipedia “Fourier series” 
page)



Parametric vs Nonparametric

• ML algorithms are often categorized into parametric and 
nonparametric.

• In general:
• Parametric methods use parameterized functions with weights 𝑤𝑤.
• Nonparametric methods store the training data or statistics of the training data.

• More precisely
• Parametric:

• Have a fixed number of weights 𝑤𝑤.
• Tend to make specific assumptions about the form of the function.

• Nonparametric:
• Do not make explicit assumptions about the form of the function.
• Number of values stored tends to vary with the amount of training data (e.g., storing data).

• There is some debate about whether some methods are parametric or 
nonparametric.

• Linear regression and regression with linear parametric are canonical examples of 
parametric.

• Nearest neighbor algorithms are canonical examples of nonparametric.



Optimization Perspective
• Recall:

argmin𝑤𝑤 𝐿𝐿 𝑤𝑤,𝐷𝐷
• Viewing 𝐿𝐿(𝑤𝑤,𝐷𝐷) as a function, 𝑓𝑓, of just the weights (and a fixed data set):

argmin𝑤𝑤 𝑓𝑓 𝑤𝑤
• Note that this is equivalent to maximizing a different function, where 𝑔𝑔 = −𝑓𝑓

argmax𝑤𝑤 𝑔𝑔 𝑤𝑤
• We could also write 𝑥𝑥 instead of 𝑤𝑤:

argmin𝑥𝑥 𝑓𝑓 𝑥𝑥
• The function being optimized (minimized or maximized) is called the 

objective function (optimization terminology).
• In this case, our objective function is a loss function (machine learning terminology).

• Question: How do we find the input that minimizes a function?



Local Search Methods

• Start with some initial input, 𝑥𝑥0
• Search for a nearby input, 𝑥𝑥1, that decreases 𝑓𝑓:

𝑓𝑓 𝑥𝑥1 < 𝑓𝑓 𝑥𝑥0
• Repeat, finding a nearby input 𝑥𝑥𝑖𝑖+1 that decreases 𝑓𝑓 (for each 

iteration 𝑖𝑖):
𝑓𝑓 𝑥𝑥𝑖𝑖+1 < 𝑓𝑓 𝑥𝑥𝑖𝑖

• Stop when:
• You cannot find a new input that decreases 𝑓𝑓
• The decrease in 𝑓𝑓 becomes very small
• The process runs for some predetermined amount of time

• Called “local search methods” because they search locally 
around some current point, 𝑥𝑥𝑖𝑖.



“Find a nearby point that decreases 𝑓𝑓”

• We will consider gradient-based optimizers.
• At any input/point 𝑥𝑥, we can query:

• 𝑓𝑓 𝑥𝑥 : The value of the objective function at the point
• 𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑥𝑥
: The derivative of the objective function at the point

• This is the gradient, and is also written as ∇𝑓𝑓(𝑥𝑥)



Local minimum: A location where all nearby 
(adjacent) points have higher values.

Global minimum: A location where the function 
achieves the lowest value (the argmin). 

Question: Is a global minimum a local minimum?
Answer: Yes!



𝑥𝑥𝑖𝑖 = 7

Question: How can we find a point 𝑥𝑥𝑖𝑖+1 such that 𝑓𝑓 𝑥𝑥𝑖𝑖+1 < 𝑓𝑓 𝑥𝑥𝑖𝑖 ? That is, a point that is “lower”?
Idea: Move a small amount “downhill”



Notice: The slope of the function tells us which direction is uphill / downhill.
Positive slope: Decrease 𝑥𝑥𝑖𝑖  to get 𝑥𝑥𝑖𝑖+1. Negative slope: Increase 𝑥𝑥𝑖𝑖  to get 𝑥𝑥𝑖𝑖+1.



Gradient Descent

• Take a step of length 𝛼𝛼 (a small positive constant) in the opposite 
direction of the slope:

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼 × slope.

• Note: The slope is 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

, so we can write:

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼
𝑑𝑑𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥

.

• 𝛼𝛼 is a hyperparameter called the step size or learning rate.



Gradient descent, 𝑥𝑥0 = 7, 𝛼𝛼 = 0.001
𝑓𝑓 𝑥𝑥 = 𝑥𝑥4 − 14𝑥𝑥3 + 60𝑥𝑥2 − 70𝑥𝑥

Question: Why do the points get closer together when we use the same step size, 𝛼𝛼?



The Gradient (multi-dimensional setting)

Question: How can we find a new 
point that is “downhill”?

Idea: Compute the slope along 
each axis!

𝑥𝑥-slope: 𝜕𝜕𝑑𝑑 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑥𝑥

𝑦𝑦-slope: 𝜕𝜕𝑑𝑑 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑦𝑦

The gradient is the concatenation 
of the slopes along each 
dimension/axis:

∇𝑓𝑓 𝑥𝑥 =
𝜕𝜕𝑓𝑓 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝑓𝑓 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑦𝑦

Note: The gradient is also called 
the “direction of steepest 
ascent”. It indicates how to 
change each input to go up-hill as 
quickly as possible.

Gradient Descent: Move both 𝑥𝑥 
and 𝑦𝑦 in the negative direction of 
their slopes. That is, move in the 
opposite direction of the gradient:

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼
𝜕𝜕𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 − 𝛼𝛼

𝜕𝜕𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖

OR
𝑥𝑥𝑖𝑖+1,𝑦𝑦𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 − 𝛼𝛼∇𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)



Pseudocode: Gradient Descent on 𝑓𝑓(𝑥𝑥)
• Hyperparameter: Step size 𝛼𝛼. Typically a small constant like 

0.1, 0.01, 0.001, …
• Assumption: 𝑓𝑓 is a function that takes a vector (or single real number) 

as input, and produces a single real number as output.
• Assumption: 𝑓𝑓 is smooth (differentiable)
• Method:

• Select an arbitrary initial point, 𝑥𝑥0 (a vector).
• For each iteration 𝑖𝑖, set 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼∇𝑓𝑓 𝑥𝑥𝑖𝑖 . Equivalently, for each element of 𝑥𝑥𝑖𝑖  

(indexed by 𝑗𝑗):

𝑥𝑥𝑖𝑖+1,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝛼𝛼
𝜕𝜕𝑓𝑓 𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖,𝑗𝑗

• Stop when progress becomes slow or after some fixed amount of time.



Pseudocode: Gradient Descent on 𝑓𝑓(𝑥𝑥)
• Hyperparameter: Step size 𝛼𝛼. Typically a small constant like 

0.1, 0.01, 0.001, …
• Assumption: 𝑓𝑓 is a function that takes a vector (or single real number) 

as input, and produces a single real number as output.
• Assumption: 𝑓𝑓 is smooth (differentiable)
• Method:

• Select an arbitrary initial point, 𝑥𝑥0 (a vector).
• For each iteration 𝑖𝑖, set 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼∇𝑓𝑓 𝑥𝑥𝑖𝑖 . Equivalently, for each element of 𝑥𝑥𝑖𝑖  

(indexed by 𝑗𝑗):

𝑥𝑥𝑖𝑖+1,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝛼𝛼
𝜕𝜕𝑓𝑓 𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖,𝑗𝑗

• Stop when progress becomes slow or after some fixed amount of time.



Manual derivation of gradient



Missing Data

• Question: What can we do if some values are missing in the data set?
• Example: Some students are missing exam scores.

• Answer 1: Remove rows with missing values.
• This can add bias when there is a correlation between when points are missing 

and other features/labels.
• This can be effective when only a few rows are missing values.

• Answer 2: Use imputation techniques.
• Replace missing values with the mean or median feature value.
• Replace missing values with the feature values from the nearest neighbor (or 𝑘𝑘 

nearest neighbors).
• Use more sophisticated techniques to estimate the missing values.



One Hot Encoding

• One hot encoding is a common strategy to avoid assigning meaning to 
the encoding of categorical features.

• If the feature has 𝑚𝑚 possible values, it is converted into 𝑚𝑚 features.
• One column is converted into 𝑚𝑚 columns.

• The value of the 𝑗𝑗th new feature is 1 if the original feature took its 𝑗𝑗th 
value, and 0 otherwise.

• Example: Original feature: “red”, “green”, “blue”
• Three new features, “is red”, “is green”, and “is blue”
• If “red”, the three new features have values [1, 0, 0]
• If “green”, the three new features have values [0, 1, 0]
• If “blue”, the three new features have values [0, 0, 1]



Feature Scaling

• When features have very different scales, it can cause problems for 
some ML algorithms.

• Question: Consider a data set with income (range 0 to 1 million) and age (range 
0 to 100). If we use nearest neighbor algorithms with Euclidean distance, what 
will happen?

• Answer: Points with (relatively) slightly different incomes will be viewed as far 
apart relative to points with different ages. 

• Note: This is not unique to nearest neighbors algorithms. Most ML algorithms 
can struggle when features have very different scales.

• When all features have a very large or small scale, it can change the 
necessary hyperparameters in unintuitive ways.

• Example: The step size for running gradient descent to fit a linear parametric 
model, using the second-degree polynomial basis, to the GPA data set (see 8.0 
Data Cleaning Intro.ipynb).



Feature Scaling

• Idea: Re-scale features.
• Approach 1 (Min-Max Scaling): Normalize to the range [0,1]

• 𝑥𝑥normalized = (𝑥𝑥unnormalized − min)/(max− min)
• Scikit-learn includes “Scalers” that perform common feature rescaling.
• The fit_transform function “fits” the scaler to the data (e.g., calculating min 

and max values of features) and then “transforms” the data (applies the 
specified rescaling). 

• Approach 2 (Standardization):
• Centers the feature (so the average is zero)
• Rescales the feature so that the standard deviation is 1
• 𝑥𝑥normalized = (𝑥𝑥unnormalized − mean)/(standard deviation)

• Several others (robust scaling, normalization, etc.)



Question: How can we make this model non-
linear w.r.t. the model parameters (weights 𝑤𝑤)?

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = �
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗

𝑥𝑥𝑖𝑖,1

𝑥𝑥𝑖𝑖,2

𝑥𝑥𝑖𝑖,3

…

𝑥𝑥𝑖𝑖,𝑑𝑑

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
…
𝑤𝑤4

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖



Answer: One way is to apply a non-linear 
function, 𝜎𝜎, to the output.

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = 𝜎𝜎 �
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗

𝑥𝑥𝑖𝑖,1

𝑥𝑥𝑖𝑖,2

𝑥𝑥𝑖𝑖,3

…

𝑥𝑥𝑖𝑖,𝑑𝑑

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
…
𝑤𝑤4

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖𝜎𝜎

Question: Would 𝜎𝜎 𝑧𝑧 = 5𝑧𝑧 
work?
Answer: No, this is a linear 
function. This would be 
equivalent to multiplying 
each weight by 5. It doesn’t 
change the functions that can 
be represented.

Question: Would 𝜎𝜎 𝑧𝑧 = 𝑧𝑧2 
work?
Answer: Yes, this would 
result in a non-linear 
parametric model.

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = �
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗

2

Note: The function 𝜎𝜎 is often called an activation function, nonlinearity, threshold function, or squashing function.
Note: This parametric model (with any nonlinear 𝜎𝜎) is called a perceptron. 



Perceptron

Output from 
previous neurons Dendrites

𝑥𝑥𝑖𝑖,1

𝑥𝑥𝑖𝑖,2

𝑥𝑥𝑖𝑖,3

…

𝑥𝑥𝑖𝑖,𝑑𝑑

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
…
𝑤𝑤4

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖𝜎𝜎Σ

Cell 
Body

Axon

Perceptrons can be viewed as 
extremely crude simulations of 
neurons.
• Roughly speaking (ignoring 

important aspects of biology and 
neuroscience), when enough of 
the inputs to a neuron are 
activated, the neuron becomes 
sufficiently stimulated and “fires” 
(it becomes activated).

• We can select 𝜎𝜎 to be similar to a 
threshold function. 

• If the weighted sum is below 
some threshold for the neuron 
to be activated, 𝜎𝜎 outputs 0 
(not firing). 

• If the weighted sum is above 
the threshold, 𝜎𝜎 outputs 1 
(firing).

The “activation function” decides 
whether the “neuron” is firing 
based on the weighted sum.



𝑥𝑥𝑖𝑖,1

𝑥𝑥𝑖𝑖,2

𝑥𝑥𝑖𝑖,3

…

𝑥𝑥𝑖𝑖,𝑑𝑑

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
…
𝑤𝑤4

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖𝜎𝜎Σ

Threshold ≈ 15

Note: This model 
typically outputs 0 or 
1, which may not be 
what we want for our 
parametric model. We 
will revisit this later.

Note: 𝜎𝜎 squashes the 
output to the range 
[0,1], hence the name 
squashing function.



Neural Networks: Parametric Models 
Comprised of Many Perceptrons
• Recall the graphical representation:

• Idea: Connect many perceptrons together.

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖

… …

This is tedious and 
too many arrows!



Neural Network Graphical Depiction

𝑥𝑥𝑖𝑖

… …

Idea: Use boxes to represent 
layers (columns) of perceptrons.

𝑥𝑥𝑖𝑖 …

Here arrows between boxes 
denote fully connected layers.
• Each perceptron in the right-

layer takes the output of each 
perceptron in the left-layer as 
input.



Neural Network (Graphical Depiction)

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

• In the context of neural networks, perceptrons are often called 
units.

• Each layer can have different numbers of units.
• The number of units in a layer is often called the “size” of the layer.

Layer 1 Layer 2 Layer 3 Layer L

…



Neural Network (Graphical Depiction)

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

• The input, 𝑥𝑥𝑖𝑖  is called the input layer.
• The last layer is called the output layer.
• All layers between the input and output layers are called hidden 

layers.

First 
Hidden 
Layer

Input 
Layer

Second 
Hidden 
Layer

Third 
Hidden 
Layer

Output 
Layer

…



Neural Network (Graphical Depiction)

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

• Sometimes the input layer is represented by its own rectangle.
• This layer simply outputs 𝑥𝑥𝑖𝑖.

Input 
Layer

First 
Hidden 
Layer

Second 
Hidden 
Layer

Output 
Layer

…



Neural Network (Graphical Depiction)

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

• The number of units in the output layer should equal the number 
of outputs of 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

• For the GPA-prediction task, 𝑥𝑥𝑖𝑖 ∈ ℝ9 and 𝑦𝑦𝑖𝑖 ∈ ℝ.
• So, the output layer should have one unit.

Input 
Layer

First 
Hidden 
Layer

Second 
Hidden 
Layer

Output 
Layer

…

For a classification 
problem with 10 classes, 
how many outputs should 
the network have?



Neural Network (Graphical Depiction)

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

• If the output of the parametric model should not be “squashed” to 
[0,1], the squashing function (activation function) can be omitted 
from the output layer.

Input 
Layer

First 
Hidden 
Layer

Second 
Hidden 
Layer

Output 
Layer

…



Activation Function: Sigmoid

• Sigmoid functions are a class of S-shaped functions.
• The most common one is called the logistic function.

• It is so common that it is often called “the” sigmoid function.

• 𝜎𝜎 𝑧𝑧 = 1
1+𝑒𝑒−𝑧𝑧



Activation Function: Hyperbolic Tangent 
Function (tanh)
• tanh 𝑧𝑧 = 𝑒𝑒𝑧𝑧−𝑒𝑒−𝑧𝑧

𝑒𝑒𝑧𝑧+𝑒𝑒−𝑧𝑧



Activation Function: Rectified Linear Unit 
(ReLU)
• ReLU 𝑧𝑧 = max(0, 𝑧𝑧)



Activation Function: Leaky ReLU

• Leaky ReLU 𝑧𝑧 = � 𝑧𝑧 if 𝑧𝑧 > 0
𝛼𝛼𝑧𝑧 if 𝑧𝑧 ≤ 0 

• Here 𝛼𝛼 is a small constant, typically 0.01.



Fully-Connected Feed-Forward Networks

• A fully-connected feed-forward ANN is one where each unit in the 
𝑖𝑖th layer:

• Takes the output of each unit in the (𝑖𝑖 − 1)th layer as input.
• Provides its output to each unit in the (𝑖𝑖 + 1)th layer.

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

Input 
Layer

First 
Hidden 
Layer

Second 
Hidden 
Layer

Output 
Layer

…



Recurrent Neural Network (RNN)

• Recurrent neural networks can have backwards connections 
between layers.

• These networks are typically run several times on the same input, 
and recurrent (backwards) edges provide values from the previous 
runs.

• Recurrent connections provide a form of “memory”

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖…



Skip Connections

• Skip connections are connections that skip over one or more 
layers.

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖…



What do different layers learn?

• Consider parametric models that take images as input.
• The layers closer to the input tend to learn low-level visual 

features.
• Later layers use these low-level features to learn about higher-

level features and concepts.

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖… …

Fires if there is an edge passing through position 
(372, 981) in the image, at an angle of 43 degrees.

Fires if there is a cow in the image Fires if there is a cow jumping over the moon



Learning Low-Level Features

• An ANN might use early layers to detect low-level features of an image
• One unit early in the network might “fire” when there is an edge at position (x,y) 

in the image, and the edge  is vertical.
• Another unit might fire when there is an edge at position (x,y) at an angle of 80 

degrees (nearly vertical).
• There may be different units for all of these features at each (x,y) coordinate in 

the image!

• Learning to separately detect the same feature at each location in the 
image is wasteful.

• Idea: Create a parametric model (layer for ANNs) that learns to find and 
represent features anywhere in the image.



Convolutional Layer

• If an image is of size imgwidth × imgheight, create a parametric model, 
called a filter, that takes as input a small subregion of the image, called 
a patch.

imgheight

imgwidth

patchwidth

patchheight• This filter (small 
parametric model) is run 
on each patch in the 
image.

• The patches can overlap.
• Each patch is a fixed 

number of pixels over 
from the previous patch. 
This number is called the 
stride.



One number, 
the “feature” 
value for this 
patch.

0.2



One number, 
the “feature” 
value for this 
patch.

0.2
0.17



One number, 
the “feature” 
value for this 
patch.

0.2
0.17

0.8



One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

0.2
0.17

0.8
−2.1



One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

When the patch reaches the end, it 
shifts down by stride pixels and 
starts over.

0.2
0.17

0.8
−2.1

1.3



One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

When the patch reaches the end, it 
shifts down by stride pixels and 
starts over.

0.2
0.17

0.8
−2.1

1.3

−0.64



One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

When the patch reaches the end, it 
shifts down by stride pixels and 
starts over.

At the end, the convolutional layer 
outputs all the computed values:
(0.2,0.17,0.8,−2.1, … , 1.3,−0.64, … )

0.2
0.17

0.8
−2.1

1.3

−0.64



One number, 
the “feature” 
value for this 
patch.

The patch is shifted over by stride 
number of pixels each time.

When the patch reaches the end, it 
shifts down by stride pixels and 
starts over.

At the end, the convolutional layer 
outputs all the computed values:
(0.2,0.17,0.8,−2.1, … , 1.3,−0.64, … )

These values are usually 
represented as a matrix to track the 
position of the patch they were 
computed from.

0.2 0.17 0.8 −2.1 1.3

−0.64 …
…



Convolutional Layer (Graphical Depiction)

…

This represents a convolutional layer (blue) applied to an image.

A wider rectangle to 
denote that this is a matrix 
of numbers, not a vector.



Convolutional Layer

• A convolutional layer with multiple filters is represented using 
many stacked boxes:

…



Convolutional Layer

• Convolutional layers can be applied in a sequence!

…



Max Pooling Layers

• When using convolutional layers with many filters, you can end up with 
more outputs from the convolutional layer than there were pixels in the 
original image!

• To make the number of values more manageable, a max pooling layer 
can be used to downsample (reduce) the number of features.

• A max pooling layer acts like a convolutional layer, but without any 
parameters.

• For each patch, it returns the maximum value within the patch.
• Other pooling layers (e.g., average pooling layers) compute other fixed functions 

of a patch (e.g., the average value in the patch)
• A max pooling layer typically has a relatively wide stride and/or patch.

• For example, a 2x2 patch with no overlap between patches quarters the number of 
values.



Flattening Layers

• Convolutional layers output values in a matrix.
• One matrix per filter

• Typical feed-forward layers expect values as a vector.
• Flattening layers convert the output of convolutional layers into 

one long vector (rather than a set of matrices).
• Flattening layers have no tunable parameters, 𝑤𝑤.



Example from Online:
https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243

• Number of channels = number of filters
• Some concepts beyond the scope of this class (e.g., padding)
• This model has 10 outputs, one per digit (more on this when 

we discuss classification)

Why 10 outputs?



Example from Online:
https://developersbreach.com/convolution-neural-network-deep-learning/

What is “softmax” doing here?



Example from Online:
https://www.researchgate.net/figure/The-architecture-of-standard-deep-CNN-CNN-std-
for-off-target-prediction-The-input-of_fig2_327641553

Note the softmax again!



Example from Online:
https://www.researchgate.net/figure/CNN-architecture-for-CIFAR-10-SVHN-The-
network-consists-of-three-convolution-layers-with_fig3_353568132

CNN architecture for CIFAR-10/SVHN: The network consists of three convolution layers with 3 × 3 
filters, 0 padding and stride 1. The convolution layers are followed by a ReLU non-linearity. We use 
max pooling in this work with a filter size of 2 × 2, no padding and stride 2 which results in a 
downsampling of the features by a factor of 2. The three convolution layers have 6, 16 and 32 filters 
respectively. Finally, a Global Average Pooling (GAP) is applied and a fully connected (fc) outputs 
logits over the number of classes.

This refers to 
the size of 
each patch



Example from Online: 
https://medium.com/analytics-vidhya/convolutional-neuronal-network-with-
keras-tuner-on-cifar-10-b4271ca4643d





Our old approach (manual derivation) is error prone 
and can be specific to a network architecture



Chain Rule (Review)

𝑑𝑑𝑓𝑓 𝑔𝑔 𝑥𝑥
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑔𝑔 𝑥𝑥

𝑑𝑑𝑔𝑔 𝑥𝑥
𝑑𝑑𝑥𝑥

or

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑦𝑦

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥



Chain Rule

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

 – How does changing 𝑥𝑥 change 𝑧𝑧?
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

 – How does changing 𝑥𝑥 change 𝑦𝑦?
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

 – How does changing y change 𝑧𝑧?

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑦𝑦

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

=2 (adding 𝜖𝜖 to 𝑥𝑥 increases 𝑦𝑦 by 2𝜖𝜖)

2

=3 (adding 𝜖𝜖 to 𝑦𝑦 increases 𝑧𝑧 by 3𝜖𝜖)

3

=6 (adding 𝜖𝜖 to 𝑥𝑥 increases 𝑧𝑧 by 6𝜖𝜖)

6



Chain Rule

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑦𝑦

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

+
𝑑𝑑𝑧𝑧
𝑑𝑑𝑦𝑦′

𝑑𝑑𝑦𝑦′

𝑑𝑑𝑥𝑥

𝑦𝑦𝑦

2
3

𝟐𝟐 × 𝟑𝟑 + 𝟏𝟏 × 𝟓𝟓 = 𝟏𝟏𝟏𝟏
1 5



Expression Trees

• Math expressions like function definitions can be converted into 
expression trees.

• Each internal node is a math operator.
• Each leaf node is a constant or variable.

• Example: 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)



We write 𝑥𝑥𝑦 and 𝑥𝑥𝑦𝑦 so that we can talk about the two paths, 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥′

 and 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥′′

 

Automatic Differentiation

• Goal: Compute 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

, for some value of 
𝑥𝑥

• Example: 𝑥𝑥 = 5
• Step 1: Run a “forwards pass”

• Evaluate the expression tree, computing 
values from the bottom to the top.

• Step 2: Run a “backwards pass”
• Loop over nodes from the top to the 

bottom.
• For each node, compute the derivative of 
𝑓𝑓(𝑥𝑥) with respect to each input of the node.

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑐𝑐

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑎𝑎

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑏𝑏

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦



Backwards Pass: Multiplication Node

• We want to compute 𝜕𝜕𝑓𝑓(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝑓𝑓(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑓𝑓(𝑥𝑥) with respect to (w.r.t.) the output out 
of the multiplication function, ×.

• This is 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

• This was computed earlier in the backwards pass by the node 
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

=

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in2

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

in1

×

in1 in2

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

in2

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out in2

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

in1



Backwards Pass: Addition Node

• We want to compute 𝜕𝜕𝑓𝑓(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝑓𝑓(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑓𝑓(𝑥𝑥) w.r.t. the output out of the addition 
function, +.

• This is 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

• This was computed earlier in the backwards pass by the node 
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in2

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

+

in1 in2

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

= 1=
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out



Backwards Pass: Exponent Node

• We want to compute 𝜕𝜕𝑓𝑓(𝑥𝑥)/𝜕𝜕in.
• Assume 𝑧𝑧 is a constant.
• Assume that we know:

• The value of the input in from the forwards pass
•  The derivative of 𝑓𝑓(𝑥𝑥) w.r.t. the output out of the 

exponentiation function, ⋅ 𝑑𝑑.
• This is 𝑑𝑑𝑑𝑑 𝑥𝑥

𝑑𝑑out
, as was computed previously in the backwards pass

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in

⋅𝑑𝑑

in

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

z𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

in𝑑𝑑−1

=
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

× 𝑧𝑧 × in𝑑𝑑−1 



𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦



𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑐𝑐

= ?

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦



𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑎𝑎

= ?

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦



𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑎𝑎

= 1

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑏𝑏

= ?

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦



𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5
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Automatic Differentiation
• Automatic differentiation tools take functions as input

• Typically these functions are implemented as code, e.g., python functions.
• They can then be used to take the derivative of the function with respect to 

the arguments (inputs).
• There are several methods for automatic differentiation, with different pros 

and cons.
• Forwards Mode Automatic Differentiation: Runs one forwards pass (no backwards 

pass!). Computes the derivative of the output w.r.t. a single scalar input.
• Reverse Mode Automatic Differentiation: The strategy we have described.

• Requires a forward and backwards pass.
• Can compute the derivative with respect to all inputs with one forwards+backwards pass.
•  This is most common for automatically differentiating ML models and loss functions.

• Others include symbolic differentiation (manipulating the mathematical expressions to 
calculate expressions for the derivative) and finite difference methods (beyond the 
scope of this course).



Autograd



Deep Learning Libraries

• There are many deep learning libraries that extend autograd to:
• Leverage low-level compiled code for faster runtimes.
• Enable forward and backwards passes on the GPU rather than CPU (more 

on this later).
• Have built-in implementations of

• Common loss functions
• Common activation functions
• Common network layers

• Fully connected feed-forward
• Convolutional layers
• Pooling layers
• Etc.



Defining a Neural Network Architecture
Defining a Parametric Model
• Extend the nn.Module base class

• The base class provides functionality for tracking trainable parameters 
(and their gradients), moving parameters to the GPU, saving and loading 
models, etc.

• Implement two functions:
• __init__(self): Define the different layers (number of units, number 

of inputs) and different activation functions that will be used.
• forward(self, x): Perform a forward pass on input 𝑥𝑥.

• You do not need to implement any gradients or the backwards 
pass!

• PyTorch uses reverse mode automatic differentiation to automatically 
compute gradients.



Note: This model is bigger than needed for the GPA prediction problem. This allows us to more easily compare 
runtimes later, and to show a phenomenon called “overfitting”.



Loss Function
• PyTorch has many built-in loss functions, including MSE:

Optimizer
• PyTorch has many built-in loss optimizers, including gradient 

descent (SGD), and Adam (SGD with a specific adaptive step size 
method).

• Several optimizers are discussed in the Jupyter notebook.
• Adam is the most common, and what we will use.





Runtime
• My work desktop has an Intel i9-9900k with 16 cores (CPU). 
• It also has an RTX 2070 GPU

• This has 2304 cores! (An RTX 4090 has 18,432 CUDA cores and 512 special 
“Tensor” cores)

• These GPU cores are limited in comparison to CPU cores.
• No branch prediction
• Limited cache
• Shorter pipeline (typically)

• Slower clock (1.605 GHz vs 5 MHz)
• Not designed for parallel processing (many processes running at once)

• Designed to perform many simple operations like dot products 
efficiently and in parallel

• These operations are useful for displaying graphics (e.g., applying simple 
functions to each pixel on the screen between every frame, changing things like 
lighting)

• They are also useful for ML! Running an ANN means computing a lot of dot 
products (and some non-linearities).



Move the model back to the CPU if you will run it or manipulate it on the CPU (e.g., saving the 
model/weights to a file). Leave on the GPU if you will only run it on the GPU.



Overfitting

• Recall that the training error for nearest neighbor (NN) was zero, 
but the testing error was large.

• NN essentially “memorized” the training data, and gave good predictions 
for the training data.

• The model did not generalize to new inputs: it had high errors for points 
not in the training data.

• When this happens using parametric models, it is called 
overfitting.



Plotting Training vs Testing Loss (General Case)

Testing loss

Training loss

Iteration or Epochs

Overfitting begins

Loss

Idea: Stop training when the 
testing loss starts increasing.



Overfitting and Model Complexity/Capacity

• Notice that we can’t overfit this 
data using a line!

• The model complexity or model 
capacity refers to a parametric 
model’s ability to represent 
general functions.

• Models with higher 
complexity/capacity can represent 
more functions.

• Models with higher 
complexity/capacity are more prone 
to over-fitting.



Avoiding Over-Fitting (Overview of Strategies)

1. Early stopping: Stop training when testing error increases. 
• Typically split data into training, validation, and testing
• Stop training when the error on the validation set begins to increase
• This ensures that the training process never looks at the testing data

2. Include a “regularization” term in the loss function
• Complete details are beyond the scope of this course.
• Regularization terms increase the loss the farther the weight vector is 

from zero: 𝐿𝐿new 𝑤𝑤,𝐷𝐷 = 𝐿𝐿 𝑤𝑤,𝐷𝐷 + 𝜆𝜆‖𝑤𝑤‖
• Often using the L1 norm, 𝑤𝑤 = ∑𝑗𝑗 𝑤𝑤𝑗𝑗  or the L2 norm 𝑤𝑤 = ∑𝑗𝑗 𝑤𝑤𝑗𝑗2.

3. Other strategies (e.g., dropout)
4. Use a large network! ⋅  denotes a norm (a 

notion of “length”)



“Use a large network”: Double Descent

• Large networks seem like they should be particularly prone to 
overfitting.

• When trained sufficiently on large amounts of data, empirical 
evidence suggests that deep (large) networks tend not to over-fit!

This phenomenon, called 
double descent, is an 
active research topic!



Regression  Classification

• Two changes for parametric methods:
1. Change the parametric model so that it outputs a discrete label as a 

prediction rather than a number
2. Select a loss function that is appropriate for classification tasks

• Note: Techniques differ for non-parametric methods
• E.g., we discussed nearest neighbor (and variants) for classification
• E.g., there are other custom non-parametric methods for classification 

like decision trees, which are beyond the scope of this course.

• Terminology: Each possible value of the label is called a class



Parametric models for classification

• Assume 𝑚𝑚 classes (possible values of the label)
• Change parametric model to have 𝑚𝑚 outputs rather than one.
• Deterministic:

• Class with the highest output is the predicted class.
• Simple and effective
• Gradient of the loss function is typically zero, making this impractical for 

training.

• Stochastic:
• The 𝑚𝑚 outputs are converted to a probability distribution over the classes, and 

the label is sampled from this distribution.
• The larger the output, the higher the probability of the class being selected



Stochastic Models: Softmax

• The softmax function converts the 𝑚𝑚 outputs to a distribution 
over the 𝑚𝑚 class values.

• Let out1, … , out𝑚𝑚 be the model outputs.
• Probabilities cannot be negative, so convert each output to a 

positive value:
out1, … , out𝑚𝑚   eout1 , … , 𝑒𝑒out𝑚𝑚  

• A probability distribution must sum to one, so divide each by the 
sum:



Binary Classification

• Special case where 𝑌𝑌𝑖𝑖 ∈ 0,1  or 𝑌𝑌𝑖𝑖 ∈ −1,1
• Typically 1 is called the “positive class”

• Parametric models need only have one output, not 𝑚𝑚 = 2
• This output encodes the probability of the positive class.
• The probability of the negative class is 1 − Pr positive class .

• The output of the model must be scaled to [0,1].
• This can be done using the logistic function (sigmoid):



Loss Functions for Classification

• There are many loss functions for classification.
• You can make your own that is tailored to your problem!

• Cross-Entropy Loss (log loss) is the most common.

• The 1
𝑛𝑛

 is sometimes omitted (it makes no difference).



Logistic Regression

• Logistic regression uses the logistic model or logit model
• Essentially a linear parametric model for classification

• Use cross-entropy loss
• Equivalent to maximizing the “likelihood” of the data given the model.

𝜎𝜎 𝑤𝑤 ⋅ 𝜙𝜙 𝑋𝑋𝑖𝑖



Stochastic  Deterministic Models

• During training often models are viewed as stochastic (minimizing 
cross-entropy loss).

• If the model is highly confident of the class for an input, the output 
for that class will be come large

• No matter how large it is, the resulting probability of the label will not be 1

• To enable models to make deterministic predictions, often models 
are evaluated (and then deployed to make predictions for new 
data) as deterministic models, even if they are trained as 
stochastic models.



We saw another example of over-fitting, and 
used early stopping to prevent it:



Evaluation Metric: Accuracy

• While relatively simple, 
accuracy can be 
misleading if the class 
distribution is imbalanced.

• In this case, 96% accuracy is 
decent!



Evaluation Metric: Confusion Matrix

• Accuracy doesn’t provide information about what kinds of errors 
are common

• Which classes are often confused?

• The confusion matrix provides this information. It is a matrix with 
one row per class and one column per class

• The 𝑖𝑖, 𝑗𝑗 th entry holds the probability that a row with actual class 𝑖𝑖 is 
classified as class 𝑗𝑗.

• In some cases the matrix reports the number of errors of each type, rather 
than the estimated probability.



Evaluation Metric: Confusion Matrix

• Accuracy doesn’t provide information about what kinds of errors 
are common

• Which classes are often confused?

• The confusion matrix provides this information. It is a matrix with 
one row per class and one column per class

• The 𝑖𝑖, 𝑗𝑗 th entry holds the probability that a row with actual class 𝑖𝑖 is 
classified as class 𝑗𝑗.

• In some cases the matrix reports the number of errors of each type, rather 
than the estimated probability.



Evaluation Metric: Precision, Recall, and F1 Score

• For binary classification tasks, statistics like precision, recall, 
and the F1 score are often used to evaluate models.

• Note: These are often used even when the loss function used in training 
measures something else, like cross-entropy loss.

• These metrics are expressed in terms of the following statistics:



Deterministic Classifiers

Stochastic Classifiers



F1 Score

• The F1 score (often written “F1 score”) combines precision and 
recall:

• This is the harmonic mean of the precision and recall
• Places more weight on low values relative to the arithmetic mean

• F1 score ranges from 0 to 1, where 1 denotes perfect precision 
and recall, and 0 means that either precision or recall is zero.



Example ROC Curve

• Curves closer to the top left 
corner correspond to better 
models.

• A classifier that ignores the 
inputs and outputs a uniform 
random number in [0,1] 
results in a diagonal line from 
(0,0) to (1,1)



Evaluation Metric: Area Under the ROC Curve 
(AUC)
• The AUC summarizes the ROC curve with a single number: The 

area under the ROC curve.
• The best possible value is 1.
• A pessimal model (one that always gets the prediction wrong) 

would have an AUC of zero.
• The random classifier achieves an AUC of 0.5



Generative AI

• Generative AI methods create new content like text, images, 
music, or other data, often mimicking some aspects of human 
creativity.

• Generative AI is often (not always!) a form of unsupervised 
learning (learning from data with no labels).

• When presented with a data set 𝐷𝐷 = 𝑋𝑋𝑖𝑖 𝑖𝑖=1
𝑛𝑛 , the agent’s goal is to create 

new  data points that are indistinguishable from the data in 𝐷𝐷.

• Two core methods in generative AI are variational autoencoders 
(VAEs) and generative adversarial networks (GANs).



Variational Autoencoders (VAEs)



Generative Adversarial Networks (GANs)

Input (noise vector) Generator Fake Data

Fake Data, Label=0
Real Data, Label=1 Discriminator

Input (noise vector) Generator Fake Data

Input (noise vector) Generator Fake Data

Predictions

Classification Loss



Conditioning on Text

• VAEs and GANs can be conditioned on text.
• In a VAE, the text is first converted into its own embedding (numerical 

vector representation)
• The text (represented as a vector of numbers) is then appended to the 

input to the decoder.
• The encoder does not see the text – it just learns a representation for the image.
• The decoder is given the latent representation of the image and the text 

description.
• To be effective, the distribution of the latent representation conditioned 

on the text must still be normally distributed.
• Otherwise, when generating a new image, the latent representation of the image 

that is sampled may not be compatible with the provided text query.
• Mechanisms for ensuring this are beyond the scope of this course.



Conditioning on Text

• To condition a GAN on text, the generator receives both the noise 
and text embedding as input.

• Its goal is to generate an image that corresponds to the text embedding 
that is indistinguishable from images and their corresponding text 
embeddings in the training data.

• The discriminator also takes the text embedding into account.
• Its goal is to determine whether the image provided for the text 

embedding corresponds to an image from the real data set or the fake 
data set.

• Note: Both training VAEs and GANs that can be conditioned on 
text requires training data containing both images and 
corresponding text descriptions!



Large Language Models (LLMs)

• Large parametric models applied to text (or audio) generation.
• Input: A sequence of words, split into tokens

• A token is a sequence of letters/punctuation
• Often a token is a word or a part of a word

• Output: The next token
• Training: This is a standard classification problem!

• Generate input-output pairs from human-written text



Foundation Models

• Modern parametric ML models are expensive to train
• Instead of everyone training new models, large models can be 

trained once and shared.
• These are called foundation models.
• Examples: GPT (OpenAI), BERT (Google), Llama (Meta), and many 

others.
• Some can be found at https://huggingface.co/



Finetuning Models

• When using foundation models, often there is a need to change 
the model in some way.

• Provide it with additional training data on a specific topic
• Change the tone of its responses
• Change it so that responses are more conversational
• Change it so that it excels at summarizing reviews
• …

• When a foundation model is further trained (often using a different 
data set and loss function!), it is called fine-tuning.



Finetuning Models Efficiently

• Even finetuning a large model can be infeasible without significant 
hardware and funding.

• One area of research involves finding more efficient ways to 
finetune models.

• Example: Low Rank Adaptation (LoRA)
• Focusses on changing weights in a section of the network (attention and 

feed-forward parts of a transformer).
• Uses low-rank matrices to represent the change to the weights.

• This is a way of using a small number of weights to tune a larger number of weights
• If there are 𝑚𝑚 × 𝑛𝑛 weights 𝑊𝑊, we tune two matrices 𝐴𝐴 and 𝐵𝐵 of sizes 𝑚𝑚 × 𝑘𝑘 and 𝑘𝑘 ×
𝑛𝑛, where 𝑘𝑘 is relatively small. The change to weights 𝑊𝑊 is then 𝐴𝐴𝐵𝐵.



Executing Models Efficiently

• Running (not just training!) large parametric models can also be 
expensive.

• Another area of research focusses on making the execution of 
large models more efficient

• Examples:
• Model pruning: Finding unimportant weights and parameters that can be 

removed.
• Quantization: Reducing weights from 32 bits to 8 bits.
• Knowledge Distillation: Train a smaller model to mimic the outputs of a 

larger pre-trained model.



End
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