
COMPSCI 389
Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 – 3:45 Building: Morrill 2 Room: 222

Topic 12.2: Supervised Learning Review
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

What is machine learning (ML)?

• Subfield of artificial intelligence (AI)
“AI is a field concerned with intelligent behavior in artifacts.”

– Nilsson 1998

• AI is not a thing/object.
• The thing/object using AI methods is called an agent.

• Agent: Something that acts, from Latin agere, which means “to do.”
• E.g., a robot or software program

Like math, physics or theology

agents

ML is a subfield of AI

• ML is a subfield of AI “concerned with the question of how to
construct computer programs that automatically improve with
experience.” [Tom Mitchell, 1997]

• Improve = learn
• Experience = data
• Computer = unnecessary

AI

ML

1950s – 1980s

AI
ML

2000s – present

Data & Supervised Learning

• Different subfields of ML assume access to different kinds of data.
• During the first part of the course, we will focus on supervised

learning problems.
• These are problems where the data is a set of points, and so it is

called a data set or dataset.
• Each point consists of a pair of inputs and outputs.
• Given a data set of such input-output pairs, a supervised learning

algorithm learns to predict the output given the input, even for
points not in the data set.

Data Set Notation

• 𝑋𝑋: Input (also called features, attributes, covariates, or
predictors)

• Typically, 𝑋𝑋 is a vector, array, or list of numbers or strings.
• 𝑌𝑌: Output (also called labels or targets)

• Typically, 𝑌𝑌 is a single number or string.
• An input-output pair is (𝑋𝑋,𝑌𝑌).
• Let 𝑛𝑛, called the data set size or size of the data set, be the

number of input-output pairs in the data set.
• Let 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 denote the 𝑖𝑖th input output pair.
• The complete data set is

𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 𝑖𝑖=1
𝑛𝑛 = 𝑋𝑋1,𝑌𝑌1 , 𝑋𝑋2,𝑌𝑌2 , … , 𝑋𝑋𝑛𝑛,𝑌𝑌𝑛𝑛 .

Feature Types

• Numerical
• Continuous: Features that can take any value in a range, like temperature or

velocity.
• Discrete: Features that take a countable number of distinct values, like the

number of cats a person owns. (Binary features are a special case.)
• Categorical (discrete, but not numbers)

• Nominal: Unordered categories like colors (red, green, blue) or genre (drama,
comedy, science fiction, etc.).

• Ordinal: Categories with a specific order like educational level (high school,
bachelor’s, master’s) or military rank (private, specialist, corporal, etc.)

• Text/String
• Image
• Other

Feature Types

• Non-numerical features are often converted into numerical
features to make them easier to work with.

• Categorical features map to integers: “Sunday”0, “Monday”1,
“Tuesday”2, etc.

• Images can be converted to sequences of (r,g,b) values describing each
pixel.

• Text can be converted to discrete or continuous features
• Discrete: Each word (or part of a word) maps to a unique integer.

• Each basic unit of text (word, character, or subword) is called a token.
• Continuous: Each word can be mapped to a vector of real numbers. This is called a

word embedding. Ideally, similar words are mapped to similar vectors of numbers.
Word embeddings are themselves learned from data.

Regression and Classification

• Within supervised learning, recall that a data set is a set of input-
output pairs (X, Y).

• Regression: 𝑌𝑌 is a continuous number.
• Multivariate Regression: 𝑌𝑌 is a vector. That is, 𝑌𝑌 ∈ ℝ𝑚𝑚 and 𝑚𝑚 > 1.

• Classification: 𝑌𝑌 is categorical (mapped to an integer).
• Binary Classification: 𝑌𝑌 ∈ 0,1 or 𝑌𝑌 ∈ −1,1 .
• Multi-Class Classification: 𝑌𝑌 ∈ 0,1, … ,𝑘𝑘 .

Nearest Neighbor

• A particularly simple yet effective ML algorithm based on the core idea:
 When presented with a query, find the data point (row) that is

most similar to the query and give the label associated with
this most-similar point as the prediction.

• We can map this to fit/predict functions:
• fit: Store the data
• predict: For each query row do the following

• Loop over each row in the training data, computing the Euclidean distance between the
query and the row.

• Create an array holding the labels from the rows with the smallest distance to the query
feature vector (often just one element).

• Return an arbitrary (e.g., random) element of the array.

Evaluation Metrics (Regression)

• Mean Error: 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖

• Rarely what you want.
• Allows positive and negative errors to cancel each other out.

• Mean Squared Error (MSE): 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

• Very common choice.
• Gives a higher weight to larger errors, making it sensitive to outliers. It’s

useful when large errors are particularly undesirable.

• Root Mean Squared Error (RMSE): MSE
• Has the same units as the target variable (unlike MSE).

Evaluation Metrics (Regression, cont.)

• Mean Absolute Error (MAE): 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖

• Like MSE, but with less emphasis on outliers.

• R-squared (𝑅𝑅2): 1 − ∑𝑖𝑖=1
𝑛𝑛 𝑦𝑦𝑖𝑖− �𝑦𝑦𝑖𝑖 2

∑𝑖𝑖=1
𝑛𝑛 𝑦𝑦𝑖𝑖− �𝑦𝑦 2 , where �𝑦𝑦 = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 .

• Also called the coefficient of determination.
• Indicates the proportion of the variance of the dependent variable (labels)

that is predictable from the independent variables (predictions).
• Larger is better (maximum possible is one).

𝑘𝑘-Nearest Neighbors (k-NN)

• Idea: Average the labels of the 𝑘𝑘 nearest points
• Pseudocode:

• Find the 𝑘𝑘 nearest neighbors to the query point.
• Called the “nearest neighbors”
• If you will run many queries, consider using a data structure like a KD-Tree to find the nearest neighbors

• Set the prediction to be the average label of these 𝑘𝑘 nearest neighbors.

• Code:

Hyperparameter,
default value 𝑘𝑘 = 3

Weighted 𝑘𝑘-Nearest Neighbor

• Let 𝑥𝑥𝑖𝑖𝑁𝑁𝑁𝑁 ,𝑦𝑦𝑖𝑖𝑁𝑁𝑁𝑁 be the 𝑖𝑖th nearest neighbor
• Let 𝑤𝑤𝑖𝑖 be the weight associated with this point

• We consider only non-negative weights: 𝑤𝑤𝑖𝑖 ≥ 0.
• We describe how 𝑤𝑤𝑖𝑖 can be computed on future slides.

• Weighted 𝑘𝑘-NN predicts the label:

�𝑦𝑦 =
∑𝑖𝑖=1𝑘𝑘 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁𝑁𝑁

∑𝑗𝑗=1𝑘𝑘 𝑤𝑤𝑗𝑗

• This is equivalent to:

�𝑦𝑦 = �
𝑖𝑖=1

𝑘𝑘
𝑤𝑤𝑖𝑖

∑𝑗𝑗=1𝑘𝑘 𝑤𝑤𝑗𝑗
𝑦𝑦𝑖𝑖𝑁𝑁𝑁𝑁

Why do we divide by the sum of the
weights?
• So that the weights sum to one.
• This keeps the prediction at the same

“scale” as the labels.
• Example: If 𝑘𝑘 = 2, 𝑤𝑤1 = 1 and 𝑤𝑤2 = 1,

and the division by the sum of weights
is dropped.

• The prediction is 2 × too big!
• Dividing by the sum of the weights

makes this a weighted average.

Gaussian Kernel
• The re-scaled probability density function (PDF) of a normal distribution.

• PDF of a normal distribution

𝑓𝑓 𝑥𝑥 =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒−

𝑥𝑥−𝜇𝜇 2

2𝜎𝜎2

• Mean 𝜇𝜇 = 0
• Standard deviation 𝜎𝜎 (a hyperparameter)

• Normalizing the weights makes the constant 1
𝜎𝜎 2𝜋𝜋

 cancel out in each weight.
Hence:

𝑤𝑤𝑖𝑖 = 𝑒𝑒−
𝑥𝑥2
2𝜎𝜎2

• We use 𝑥𝑥 = dist 𝑥𝑥𝑖𝑖𝑁𝑁𝑁𝑁 , 𝑥𝑥query giving:

𝑤𝑤𝑖𝑖 = 𝑒𝑒−
dist 𝑥𝑥𝑖𝑖

𝑁𝑁𝑁𝑁,𝑥𝑥query
2

2𝜎𝜎2

Tuning Hyperparameters

• How should we set 𝑘𝑘 and 𝜎𝜎?
• Idea: Enumerate a “grid” of possible values.

• Try all possible combinations of values of 𝑘𝑘 in k_values and 𝜎𝜎
in sigma_values.

• If plotted as points where the horizontal axis is 𝑘𝑘 and the vertical is 𝜎𝜎 (or
vice versa), the points would form a grid.

• Hence, called “Grid Search”
• Select the values that result in the best evaluation

Tuning Hyperparameters

• Grid search is common due to its simplicity.
• Research suggests that randomized searches may be more

principled.
• Randomly sample each hyperparameter from some distribution
• Typically run for some fixed number of hyperparameter settings

Train/Validation/Test Sets

• Validation sets are often used to automatically tune
hyperparameters.

• The data is split into three sets: train, evaluation, and test. The
following procedure is then used:

• For each hyperparameter setting:
• Train a model using the training data.
• Evaluate the model using the validation data.

• Select the hyperparameter settings that achieve the best evaluation on
the validation set.

• Train a model using all the training and validation data and the
hyperparameters that achieved the best evaluation.

• Evaluate the model using the testing set.

Classification with NN-Variants

• NN: No changes needed!
• k-NN: The predicted label comes from a majority vote of the k

nearest neighbors.
• Weighted k-NN: Each neighbor’s vote is weighted in the vote.

Mean Squared Error (revisited)

• The MSE is:
MSE = 𝐄𝐄 𝑌𝑌 − �𝑌𝑌𝑖𝑖

2 .
• This is a parameter or population statistic.

• The sample MSE is:

�MSE𝑛𝑛 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖
2 or

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖 2 .

• This is a statistic or sample statistic.
• The “hat” means “an estimate” and the 𝑛𝑛-subscript indicates it is computed

from 𝑛𝑛 samples.
• Our goal is typically to optimize a parameter.

• We don’t know this parameter’s value.
• In an attempt to achieve this goal, we use sample statistics.

• We can compute sample statistics from data!

Confidence Interval

• We will use the number of samples and their variance to construct a
confidence interval for the parameter (e.g., MSE) based on the sample
statistic (sample MSE).

• A confidence interval is an interval (range of numbers) that contains a
parameter with a specified confidence, 1 − 𝛿𝛿.

• If [𝐿𝐿,𝑈𝑈] is a 1 − 𝛿𝛿 confidence interval for the mean 𝜇𝜇, then
Pr 𝐿𝐿 ≤ 𝜇𝜇 ≤ 𝑈𝑈 ≥ 1 − 𝛿𝛿.

• Question: What is random in this statement of probability?
• Answer: The confidence interval is random! It is typically computed

from data. Different samples of data result in different lower and upper
bounds.

Standard Error
• One common way to obtain a confidence interval is using standard error.
• Let 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 be a sequence of 𝑛𝑛 numbers.
• Let 𝜎𝜎 be the sample standard deviation of this sequence (with Bessel’s

correction):

𝜎𝜎 =
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − �̅�𝑥 2

𝑛𝑛 − 1
,

�̅�𝑥 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

 𝑥𝑥𝑖𝑖

• The standard error is then
SE =

𝜎𝜎
𝑛𝑛

.

Using Standard Error

• If 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 are 𝑛𝑛 random variables and:
• The random variables are i.i.d. with mean 𝜇𝜇.
• The random variables are each normally distributed.
• �𝑋𝑋 = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖 is the sample mean.

• Then �𝑋𝑋 − 1.96 × SE, �𝑋𝑋 + 1.96 × SE is a 95% confidence interval
for 𝜇𝜇.

• That is:
Pr �𝑋𝑋 − 1.96 × SE ≤ 𝜇𝜇 ≤ �𝑋𝑋 + 1.96 × SE ≥ 0.95.

Mean Squared Error (re-revisited)

• MSE: MSE = 𝐄𝐄 𝑌𝑌 − �𝑌𝑌𝑖𝑖
2 .

• Sample MSE: �MSE𝑛𝑛 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖

2 .

• Let 𝑍𝑍𝑖𝑖 = 𝑌𝑌𝑖𝑖 − �𝑌𝑌𝑖𝑖
2

.
• Notice that 𝜇𝜇 = 𝐄𝐄 𝑍𝑍𝑖𝑖 = MSE, and let SE be the standard error of
𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑛𝑛.

• So, �MSE𝑛𝑛 ± 1.96 × SE is a 95% confidence interval for the actual
MSE (under normality assumptions).

• Although normality assumptions often false, this gives a rough idea of
how much the sample MSE can be trusted.

We can be somewhat confident that the model learned by NN is worse than the
model learned by k-NN (𝑘𝑘 = 100) and weighted k-NN (𝑘𝑘 = 110,𝜎𝜎 = 90).

We cannot be confidence about k-NN vs weighted k-NN.

Note: Always check for the meaning of the ± value! Standard error, standard
deviation, and confidence intervals all have very different meanings!

±1.96 × SE

Model Evaluation (Review)

• Often ML texts evaluate models by doing the following:
• Partition the data into train/test.
• Train the model on the training data.
• Evaluate the model on the testing data.
• Report a performance metric and a number representing the uncertainty

in this performance metric.
• Format: performance ±uncertainty

Algorithm Evaluation (Ideal)
In practice, we can’t do
this step!

Cross-Validation

• Idea: Repeatedly define different parts of the data set to be training and
testing data.

• Different training sets result in different models.
• The testing set for each model will always be independent of the data used to

train the model.
• To do this, we will split the data 𝐷𝐷 into 𝑘𝑘 equally-sized subsets.

• Each of these subsets is called a fold.
• This 𝑘𝑘 is not related to the 𝑘𝑘 in nearest neighbor.

• We will train on all but one fold and test on the held-out fold.
• These individual evaluations on test sets containing one fold have high variance!
• We can average these high-variance evaluations to obtain a better estimate of

performance.

Entire Data Set

𝑘𝑘 folds

Entire Data Set

𝑘𝑘 folds

Test Train

𝑃𝑃1

Performance
Prediction

𝑃𝑃2

𝑃𝑃3

Repeat for 𝑃𝑃1, … ,𝑃𝑃𝑘𝑘 Performance Estimate = mean(𝑃𝑃1, … ,𝑃𝑃𝑘𝑘) Uncertainty quantification = SE(𝑃𝑃1, … ,𝑃𝑃𝑘𝑘)

K-Fold Cross-Validation Pseudocode

Leave-One-Out (LOO) Cross-Validation

• The number of folds equals the number of points in the data set.
• Each test set contains only a single point!
• Provides the best estimates of performance.
• Often too computationally intensive to perform.

Linear Regression

• Search for the line that is a best fit to the data.
• Different performance measures correspond to different ways of

measuring the quality of a fit.
• Sample mean squared error, or the sum of the squared errors is

particularly common:
�MSE𝑛𝑛: 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2 and SSE: ∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

• Although not identical, the line that minimizes one also minimizes the
other.

• Using sample MSE, this method is called “least squares linear
regression.”

Linear Regression: What is a line?

𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏

�𝑦𝑦 = 𝑤𝑤1𝑥𝑥𝑖𝑖 + 𝑤𝑤2

Prediction, �𝑦𝑦𝑖𝑖 Input, 𝑥𝑥𝑖𝑖Slope, 𝑚𝑚 y-intercept, 𝑏𝑏

“weights,” or “parameters”, 𝑤𝑤 = 𝑤𝑤1,𝑤𝑤2

Models (Review)

• A model is a mechanism that maps input data to predictions.
• ML algorithms take data sets as input and produce models as

output.

ML Algorithm Model

Data Set

Query

Prediction

A query can be one or more feature vectors.

Predictions are given for
each feature vector in the
query.

Parametric Model

• A model “parameterized” by a weight vector 𝑤𝑤.
• Different settings of 𝑤𝑤 result in different predictions.
• Let �𝑦𝑦 = 𝑓𝑓𝑤𝑤 𝑥𝑥

• 1-dimensional linear case:
𝑓𝑓𝑤𝑤(𝑥𝑥) = 𝑤𝑤1𝑥𝑥 + 𝑤𝑤2

• 𝑑𝑑-dimensional linear case:
𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = 𝑤𝑤1𝑥𝑥𝑖𝑖,1 + 𝑤𝑤2𝑥𝑥𝑖𝑖,2 + … + 𝑤𝑤𝑑𝑑𝑥𝑥𝑖𝑖,𝑑𝑑

• We can write this as:

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = �
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗 𝑥𝑥𝑖𝑖,𝑗𝑗 .

• This is called a dot product and can be written as 𝑤𝑤 ⋅ 𝑥𝑥𝑖𝑖 or 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖.

Linear Regression: Optimization Perspective
• Given a parametric model 𝑓𝑓𝑤𝑤 of any form how can we find the weights 𝑤𝑤 that

result in the “best fit”?
• Let 𝐿𝐿 be a function called a loss function.

• It takes as input a model (or model weights 𝑤𝑤)
• It also takes as input data 𝐷𝐷
• It produces as output a real-number describing how bad of a fit the model is to the

provided data.
• The evaluation metrics we have discussed can be viewed as loss functions.

For example, the sample MSE loss function is:

𝐿𝐿 𝑤𝑤,𝐷𝐷 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖
2

• We phrase this as an optimization problem:
argmin𝑤𝑤 𝐿𝐿(𝑤𝑤,𝐷𝐷)

For the sample MSE loss
function, this can be any
parametric model, not
just a linear one!

Linear Regression: Optimization Perspective

argmin𝑤𝑤 𝐿𝐿(𝑤𝑤,𝐷𝐷)
• Recall: argmin returns the 𝑤𝑤 that achieves the minimum value of
𝐿𝐿(𝑤𝑤,𝐷𝐷), not the minimum value of 𝐿𝐿(𝑤𝑤,𝐷𝐷) itself.

• This expression describes a massive range of ML methods.
• Supervised, unsupervised, (batch/offline) RL
• Deep neural networks
• Large language models and generative AI

• Different problem settings and algorithms in ML correspond to:
• Different loss functions
• Different parametric models.
• Different algorithms for approximating the best weight vector 𝑤𝑤.

Linear Parametric Model ≠Linear Functions

• Linear parametric functions are functions 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 that are linear functions
of the weights 𝒘𝒘.

• They need not be linear functions of the input 𝑥𝑥𝑖𝑖.

Input 𝑥𝑥𝑖𝑖
Feature

generator 𝜙𝜙

Note: The input 𝑥𝑥𝑖𝑖 is
a vector – an array
of values.

Feature 1:
𝜙𝜙1 𝑥𝑥𝑖𝑖

Feature 2:
𝜙𝜙2 𝑥𝑥𝑖𝑖

Feature m:
𝜙𝜙𝑚𝑚 𝑥𝑥𝑖𝑖

…

Each feature is a real number
(not a vector or array)

Linear Regression:
𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = 𝑤𝑤1𝜙𝜙1 𝑥𝑥𝑖𝑖 + 𝑤𝑤2𝜙𝜙2 𝑥𝑥𝑖𝑖 + ⋯

Prediction, �𝑦𝑦𝑖𝑖

Note: This is equivalent to pre-processing the data,
converting 𝑥𝑥𝑖𝑖 (length 𝑑𝑑) into 𝜙𝜙 𝑥𝑥𝑖𝑖 (length 𝑚𝑚)

Note: Each feature can depend on more than one
element of 𝑥𝑥𝑖𝑖. So, this is 𝜙𝜙1 𝑥𝑥𝑖𝑖 not 𝜙𝜙1 𝑥𝑥𝑖𝑖,1 .

Linear Parametric Model ≠Linear Functions

• Linear parametric functions are functions 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 that are linear
functions of the weights 𝒘𝒘.

• They need not be linear functions of the input 𝑥𝑥𝑖𝑖.
• That is, a linear parametric model has the form:

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = �
𝑗𝑗=1

𝑚𝑚

𝑤𝑤𝑗𝑗𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 ,

where 𝜙𝜙 takes the input vector 𝑥𝑥𝑖𝑖 as input and produces a vector of 𝑚𝑚
features as output. That is, 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 is the 𝑗𝑗th feature output by 𝜙𝜙.
• 𝜙𝜙 is called the basis function, feature generator, or feature mapping

function.

Multivariate Polynomial Basis

• How does the polynomial basis, 𝜙𝜙, work if 𝑥𝑥 is multidimensional (an array
rather than a number?)

• Multivariate polynomial on inputs 𝑥𝑥,𝑦𝑦:
𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐𝑦𝑦 + 𝑑𝑑𝑥𝑥𝑦𝑦 + 𝑒𝑒𝑥𝑥2 + 𝑓𝑓𝑦𝑦2 + 𝑔𝑔𝑥𝑥𝑦𝑦2 + ℎ𝑥𝑥2𝑦𝑦 + 𝑖𝑖𝑥𝑥3 + ⋯

• Multivariate polynomial on input 𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2:
𝑤𝑤1 + 𝑤𝑤2𝑥𝑥𝑖𝑖,1 + 𝑤𝑤3𝑥𝑥𝑖𝑖,2 + 𝑤𝑤4𝑥𝑥𝑖𝑖,1𝑥𝑥𝑖𝑖,2 + 𝑤𝑤5𝑥𝑥𝑖𝑖,12 + 𝑤𝑤6𝑥𝑥𝑖𝑖,22 + 𝑤𝑤7𝑥𝑥𝑖𝑖,1𝑥𝑥𝑖𝑖,22 + 𝑤𝑤8𝑥𝑥𝑖𝑖,12 𝑥𝑥𝑖𝑖,22 + 𝑤𝑤9𝑥𝑥𝑖𝑖,13 + ⋯

• The expression above is 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 for a linear parametric model using the
multivariate polynomial basis.

• Notice that some 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 terms depend on more than one element of 𝑥𝑥𝑖𝑖!
• This term is 𝑤𝑤8𝜙𝜙8 𝑥𝑥𝑖𝑖

Fourier Basis

• Each 𝜙𝜙𝑗𝑗 is a cosine function with a different period.
• Can optionally include both sine and cosine functions.

• Univariate:
• 𝜙𝜙𝑗𝑗 𝑥𝑥𝑖𝑖 = cos(𝑗𝑗𝜋𝜋𝑥𝑥)

• Approximation of a step function (from Wikipedia “Fourier series”
page)

Parametric vs Nonparametric

• ML algorithms are often categorized into parametric and
nonparametric.

• In general:
• Parametric methods use parameterized functions with weights 𝑤𝑤.
• Nonparametric methods store the training data or statistics of the training data.

• More precisely
• Parametric:

• Have a fixed number of weights 𝑤𝑤.
• Tend to make specific assumptions about the form of the function.

• Nonparametric:
• Do not make explicit assumptions about the form of the function.
• Number of values stored tends to vary with the amount of training data (e.g., storing data).

• There is some debate about whether some methods are parametric or
nonparametric.

• Linear regression and regression with linear parametric are canonical examples of
parametric.

• Nearest neighbor algorithms are canonical examples of nonparametric.

Optimization Perspective
• Recall:

argmin𝑤𝑤 𝐿𝐿 𝑤𝑤,𝐷𝐷
• Viewing 𝐿𝐿(𝑤𝑤,𝐷𝐷) as a function, 𝑓𝑓, of just the weights (and a fixed data set):

argmin𝑤𝑤 𝑓𝑓 𝑤𝑤
• Note that this is equivalent to maximizing a different function, where 𝑔𝑔 = −𝑓𝑓

argmax𝑤𝑤 𝑔𝑔 𝑤𝑤
• We could also write 𝑥𝑥 instead of 𝑤𝑤:

argmin𝑥𝑥 𝑓𝑓 𝑥𝑥
• The function being optimized (minimized or maximized) is called the

objective function (optimization terminology).
• In this case, our objective function is a loss function (machine learning terminology).

• Question: How do we find the input that minimizes a function?

Local Search Methods

• Start with some initial input, 𝑥𝑥0
• Search for a nearby input, 𝑥𝑥1, that decreases 𝑓𝑓:

𝑓𝑓 𝑥𝑥1 < 𝑓𝑓 𝑥𝑥0
• Repeat, finding a nearby input 𝑥𝑥𝑖𝑖+1 that decreases 𝑓𝑓 (for each

iteration 𝑖𝑖):
𝑓𝑓 𝑥𝑥𝑖𝑖+1 < 𝑓𝑓 𝑥𝑥𝑖𝑖

• Stop when:
• You cannot find a new input that decreases 𝑓𝑓
• The decrease in 𝑓𝑓 becomes very small
• The process runs for some predetermined amount of time

• Called “local search methods” because they search locally
around some current point, 𝑥𝑥𝑖𝑖.

“Find a nearby point that decreases 𝑓𝑓”

• We will consider gradient-based optimizers.
• At any input/point 𝑥𝑥, we can query:

• 𝑓𝑓 𝑥𝑥 : The value of the objective function at the point
• 𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑥𝑥
: The derivative of the objective function at the point

• This is the gradient, and is also written as ∇𝑓𝑓(𝑥𝑥)

Local minimum: A location where all nearby
(adjacent) points have higher values.

Global minimum: A location where the function
achieves the lowest value (the argmin).

Question: Is a global minimum a local minimum?
Answer: Yes!

𝑥𝑥𝑖𝑖 = 7

Question: How can we find a point 𝑥𝑥𝑖𝑖+1 such that 𝑓𝑓 𝑥𝑥𝑖𝑖+1 < 𝑓𝑓 𝑥𝑥𝑖𝑖 ? That is, a point that is “lower”?
Idea: Move a small amount “downhill”

Notice: The slope of the function tells us which direction is uphill / downhill.
Positive slope: Decrease 𝑥𝑥𝑖𝑖 to get 𝑥𝑥𝑖𝑖+1. Negative slope: Increase 𝑥𝑥𝑖𝑖 to get 𝑥𝑥𝑖𝑖+1.

Gradient Descent

• Take a step of length 𝛼𝛼 (a small positive constant) in the opposite
direction of the slope:

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼 × slope.

• Note: The slope is 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

, so we can write:

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼
𝑑𝑑𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥

.

• 𝛼𝛼 is a hyperparameter called the step size or learning rate.

Gradient descent, 𝑥𝑥0 = 7, 𝛼𝛼 = 0.001
𝑓𝑓 𝑥𝑥 = 𝑥𝑥4 − 14𝑥𝑥3 + 60𝑥𝑥2 − 70𝑥𝑥

Question: Why do the points get closer together when we use the same step size, 𝛼𝛼?

The Gradient (multi-dimensional setting)

Question: How can we find a new
point that is “downhill”?

Idea: Compute the slope along
each axis!

𝑥𝑥-slope: 𝜕𝜕𝑑𝑑 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑥𝑥

𝑦𝑦-slope: 𝜕𝜕𝑑𝑑 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑦𝑦

The gradient is the concatenation
of the slopes along each
dimension/axis:

∇𝑓𝑓 𝑥𝑥 =
𝜕𝜕𝑓𝑓 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑥𝑥 ,

𝜕𝜕𝑓𝑓 𝑥𝑥,𝑦𝑦
𝜕𝜕𝑦𝑦

Note: The gradient is also called
the “direction of steepest
ascent”. It indicates how to
change each input to go up-hill as
quickly as possible.

Gradient Descent: Move both 𝑥𝑥
and 𝑦𝑦 in the negative direction of
their slopes. That is, move in the
opposite direction of the gradient:

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼
𝜕𝜕𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 − 𝛼𝛼

𝜕𝜕𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖

OR
𝑥𝑥𝑖𝑖+1,𝑦𝑦𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 − 𝛼𝛼∇𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

Pseudocode: Gradient Descent on 𝑓𝑓(𝑥𝑥)
• Hyperparameter: Step size 𝛼𝛼. Typically a small constant like

0.1, 0.01, 0.001, …
• Assumption: 𝑓𝑓 is a function that takes a vector (or single real number)

as input, and produces a single real number as output.
• Assumption: 𝑓𝑓 is smooth (differentiable)
• Method:

• Select an arbitrary initial point, 𝑥𝑥0 (a vector).
• For each iteration 𝑖𝑖, set 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼∇𝑓𝑓 𝑥𝑥𝑖𝑖 . Equivalently, for each element of 𝑥𝑥𝑖𝑖

(indexed by 𝑗𝑗):

𝑥𝑥𝑖𝑖+1,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝛼𝛼
𝜕𝜕𝑓𝑓 𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖,𝑗𝑗

• Stop when progress becomes slow or after some fixed amount of time.

Pseudocode: Gradient Descent on 𝑓𝑓(𝑥𝑥)
• Hyperparameter: Step size 𝛼𝛼. Typically a small constant like

0.1, 0.01, 0.001, …
• Assumption: 𝑓𝑓 is a function that takes a vector (or single real number)

as input, and produces a single real number as output.
• Assumption: 𝑓𝑓 is smooth (differentiable)
• Method:

• Select an arbitrary initial point, 𝑥𝑥0 (a vector).
• For each iteration 𝑖𝑖, set 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 − 𝛼𝛼∇𝑓𝑓 𝑥𝑥𝑖𝑖 . Equivalently, for each element of 𝑥𝑥𝑖𝑖

(indexed by 𝑗𝑗):

𝑥𝑥𝑖𝑖+1,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝛼𝛼
𝜕𝜕𝑓𝑓 𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖,𝑗𝑗

• Stop when progress becomes slow or after some fixed amount of time.

Manual derivation of gradient

Missing Data

• Question: What can we do if some values are missing in the data set?
• Example: Some students are missing exam scores.

• Answer 1: Remove rows with missing values.
• This can add bias when there is a correlation between when points are missing

and other features/labels.
• This can be effective when only a few rows are missing values.

• Answer 2: Use imputation techniques.
• Replace missing values with the mean or median feature value.
• Replace missing values with the feature values from the nearest neighbor (or 𝑘𝑘

nearest neighbors).
• Use more sophisticated techniques to estimate the missing values.

One Hot Encoding

• One hot encoding is a common strategy to avoid assigning meaning to
the encoding of categorical features.

• If the feature has 𝑚𝑚 possible values, it is converted into 𝑚𝑚 features.
• One column is converted into 𝑚𝑚 columns.

• The value of the 𝑗𝑗th new feature is 1 if the original feature took its 𝑗𝑗th
value, and 0 otherwise.

• Example: Original feature: “red”, “green”, “blue”
• Three new features, “is red”, “is green”, and “is blue”
• If “red”, the three new features have values [1, 0, 0]
• If “green”, the three new features have values [0, 1, 0]
• If “blue”, the three new features have values [0, 0, 1]

Feature Scaling

• When features have very different scales, it can cause problems for
some ML algorithms.

• Question: Consider a data set with income (range 0 to 1 million) and age (range
0 to 100). If we use nearest neighbor algorithms with Euclidean distance, what
will happen?

• Answer: Points with (relatively) slightly different incomes will be viewed as far
apart relative to points with different ages.

• Note: This is not unique to nearest neighbors algorithms. Most ML algorithms
can struggle when features have very different scales.

• When all features have a very large or small scale, it can change the
necessary hyperparameters in unintuitive ways.

• Example: The step size for running gradient descent to fit a linear parametric
model, using the second-degree polynomial basis, to the GPA data set (see 8.0
Data Cleaning Intro.ipynb).

Feature Scaling

• Idea: Re-scale features.
• Approach 1 (Min-Max Scaling): Normalize to the range [0,1]

• 𝑥𝑥normalized = (𝑥𝑥unnormalized − min)/(max− min)
• Scikit-learn includes “Scalers” that perform common feature rescaling.
• The fit_transform function “fits” the scaler to the data (e.g., calculating min

and max values of features) and then “transforms” the data (applies the
specified rescaling).

• Approach 2 (Standardization):
• Centers the feature (so the average is zero)
• Rescales the feature so that the standard deviation is 1
• 𝑥𝑥normalized = (𝑥𝑥unnormalized − mean)/(standard deviation)

• Several others (robust scaling, normalization, etc.)

Question: How can we make this model non-
linear w.r.t. the model parameters (weights 𝑤𝑤)?

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = �
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗

𝑥𝑥𝑖𝑖,1

𝑥𝑥𝑖𝑖,2

𝑥𝑥𝑖𝑖,3

…

𝑥𝑥𝑖𝑖,𝑑𝑑

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
…
𝑤𝑤4

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

Answer: One way is to apply a non-linear
function, 𝜎𝜎, to the output.

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = 𝜎𝜎 �
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗

𝑥𝑥𝑖𝑖,1

𝑥𝑥𝑖𝑖,2

𝑥𝑥𝑖𝑖,3

…

𝑥𝑥𝑖𝑖,𝑑𝑑

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
…
𝑤𝑤4

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖𝜎𝜎

Question: Would 𝜎𝜎 𝑧𝑧 = 5𝑧𝑧
work?
Answer: No, this is a linear
function. This would be
equivalent to multiplying
each weight by 5. It doesn’t
change the functions that can
be represented.

Question: Would 𝜎𝜎 𝑧𝑧 = 𝑧𝑧2
work?
Answer: Yes, this would
result in a non-linear
parametric model.

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖 = �
𝑗𝑗=1

𝑑𝑑

𝑤𝑤𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗

2

Note: The function 𝜎𝜎 is often called an activation function, nonlinearity, threshold function, or squashing function.
Note: This parametric model (with any nonlinear 𝜎𝜎) is called a perceptron.

Perceptron

Output from
previous neurons Dendrites

𝑥𝑥𝑖𝑖,1

𝑥𝑥𝑖𝑖,2

𝑥𝑥𝑖𝑖,3

…

𝑥𝑥𝑖𝑖,𝑑𝑑

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
…
𝑤𝑤4

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖𝜎𝜎Σ

Cell
Body

Axon

Perceptrons can be viewed as
extremely crude simulations of
neurons.
• Roughly speaking (ignoring

important aspects of biology and
neuroscience), when enough of
the inputs to a neuron are
activated, the neuron becomes
sufficiently stimulated and “fires”
(it becomes activated).

• We can select 𝜎𝜎 to be similar to a
threshold function.

• If the weighted sum is below
some threshold for the neuron
to be activated, 𝜎𝜎 outputs 0
(not firing).

• If the weighted sum is above
the threshold, 𝜎𝜎 outputs 1
(firing).

The “activation function” decides
whether the “neuron” is firing
based on the weighted sum.

𝑥𝑥𝑖𝑖,1

𝑥𝑥𝑖𝑖,2

𝑥𝑥𝑖𝑖,3

…

𝑥𝑥𝑖𝑖,𝑑𝑑

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
…
𝑤𝑤4

𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖𝜎𝜎Σ

Threshold ≈ 15

Note: This model
typically outputs 0 or
1, which may not be
what we want for our
parametric model. We
will revisit this later.

Note: 𝜎𝜎 squashes the
output to the range
[0,1], hence the name
squashing function.

Neural Networks: Parametric Models
Comprised of Many Perceptrons
• Recall the graphical representation:

• Idea: Connect many perceptrons together.

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖

… …

This is tedious and
too many arrows!

Neural Network Graphical Depiction

𝑥𝑥𝑖𝑖

… …

Idea: Use boxes to represent
layers (columns) of perceptrons.

𝑥𝑥𝑖𝑖 …

Here arrows between boxes
denote fully connected layers.
• Each perceptron in the right-

layer takes the output of each
perceptron in the left-layer as
input.

Neural Network (Graphical Depiction)

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

• In the context of neural networks, perceptrons are often called
units.

• Each layer can have different numbers of units.
• The number of units in a layer is often called the “size” of the layer.

Layer 1 Layer 2 Layer 3 Layer L

…

Neural Network (Graphical Depiction)

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

• The input, 𝑥𝑥𝑖𝑖 is called the input layer.
• The last layer is called the output layer.
• All layers between the input and output layers are called hidden

layers.

First
Hidden
Layer

Input
Layer

Second
Hidden
Layer

Third
Hidden
Layer

Output
Layer

…

Neural Network (Graphical Depiction)

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

• Sometimes the input layer is represented by its own rectangle.
• This layer simply outputs 𝑥𝑥𝑖𝑖.

Input
Layer

First
Hidden
Layer

Second
Hidden
Layer

Output
Layer

…

Neural Network (Graphical Depiction)

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

• The number of units in the output layer should equal the number
of outputs of 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

• For the GPA-prediction task, 𝑥𝑥𝑖𝑖 ∈ ℝ9 and 𝑦𝑦𝑖𝑖 ∈ ℝ.
• So, the output layer should have one unit.

Input
Layer

First
Hidden
Layer

Second
Hidden
Layer

Output
Layer

…

For a classification
problem with 10 classes,
how many outputs should
the network have?

Neural Network (Graphical Depiction)

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

• If the output of the parametric model should not be “squashed” to
[0,1], the squashing function (activation function) can be omitted
from the output layer.

Input
Layer

First
Hidden
Layer

Second
Hidden
Layer

Output
Layer

…

Activation Function: Sigmoid

• Sigmoid functions are a class of S-shaped functions.
• The most common one is called the logistic function.

• It is so common that it is often called “the” sigmoid function.

• 𝜎𝜎 𝑧𝑧 = 1
1+𝑒𝑒−𝑧𝑧

Activation Function: Hyperbolic Tangent
Function (tanh)
• tanh 𝑧𝑧 = 𝑒𝑒𝑧𝑧−𝑒𝑒−𝑧𝑧

𝑒𝑒𝑧𝑧+𝑒𝑒−𝑧𝑧

Activation Function: Rectified Linear Unit
(ReLU)
• ReLU 𝑧𝑧 = max(0, 𝑧𝑧)

Activation Function: Leaky ReLU

• Leaky ReLU 𝑧𝑧 = � 𝑧𝑧 if 𝑧𝑧 > 0
𝛼𝛼𝑧𝑧 if 𝑧𝑧 ≤ 0

• Here 𝛼𝛼 is a small constant, typically 0.01.

Fully-Connected Feed-Forward Networks

• A fully-connected feed-forward ANN is one where each unit in the
𝑖𝑖th layer:

• Takes the output of each unit in the (𝑖𝑖 − 1)th layer as input.
• Provides its output to each unit in the (𝑖𝑖 + 1)th layer.

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖

Input
Layer

First
Hidden
Layer

Second
Hidden
Layer

Output
Layer

…

Recurrent Neural Network (RNN)

• Recurrent neural networks can have backwards connections
between layers.

• These networks are typically run several times on the same input,
and recurrent (backwards) edges provide values from the previous
runs.

• Recurrent connections provide a form of “memory”

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖…

Skip Connections

• Skip connections are connections that skip over one or more
layers.

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖…

What do different layers learn?

• Consider parametric models that take images as input.
• The layers closer to the input tend to learn low-level visual

features.
• Later layers use these low-level features to learn about higher-

level features and concepts.

𝑥𝑥𝑖𝑖 𝑓𝑓𝑤𝑤 𝑥𝑥𝑖𝑖… …

Fires if there is an edge passing through position
(372, 981) in the image, at an angle of 43 degrees.

Fires if there is a cow in the image Fires if there is a cow jumping over the moon

Learning Low-Level Features

• An ANN might use early layers to detect low-level features of an image
• One unit early in the network might “fire” when there is an edge at position (x,y)

in the image, and the edge is vertical.
• Another unit might fire when there is an edge at position (x,y) at an angle of 80

degrees (nearly vertical).
• There may be different units for all of these features at each (x,y) coordinate in

the image!

• Learning to separately detect the same feature at each location in the
image is wasteful.

• Idea: Create a parametric model (layer for ANNs) that learns to find and
represent features anywhere in the image.

Convolutional Layer

• If an image is of size imgwidth × imgheight, create a parametric model,
called a filter, that takes as input a small subregion of the image, called
a patch.

imgheight

imgwidth

patchwidth

patchheight• This filter (small
parametric model) is run
on each patch in the
image.

• The patches can overlap.
• Each patch is a fixed

number of pixels over
from the previous patch.
This number is called the
stride.

One number,
the “feature”
value for this
patch.

0.2

One number,
the “feature”
value for this
patch.

0.2
0.17

One number,
the “feature”
value for this
patch.

0.2
0.17

0.8

One number,
the “feature”
value for this
patch.

The patch is shifted over by stride
number of pixels each time.

0.2
0.17

0.8
−2.1

One number,
the “feature”
value for this
patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.

0.2
0.17

0.8
−2.1

1.3

One number,
the “feature”
value for this
patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.

0.2
0.17

0.8
−2.1

1.3

−0.64

One number,
the “feature”
value for this
patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.

At the end, the convolutional layer
outputs all the computed values:
(0.2,0.17,0.8,−2.1, … , 1.3,−0.64, …)

0.2
0.17

0.8
−2.1

1.3

−0.64

One number,
the “feature”
value for this
patch.

The patch is shifted over by stride
number of pixels each time.

When the patch reaches the end, it
shifts down by stride pixels and
starts over.

At the end, the convolutional layer
outputs all the computed values:
(0.2,0.17,0.8,−2.1, … , 1.3,−0.64, …)

These values are usually
represented as a matrix to track the
position of the patch they were
computed from.

0.2 0.17 0.8 −2.1 1.3

−0.64 …
…

Convolutional Layer (Graphical Depiction)

…

This represents a convolutional layer (blue) applied to an image.

A wider rectangle to
denote that this is a matrix
of numbers, not a vector.

Convolutional Layer

• A convolutional layer with multiple filters is represented using
many stacked boxes:

…

Convolutional Layer

• Convolutional layers can be applied in a sequence!

…

Max Pooling Layers

• When using convolutional layers with many filters, you can end up with
more outputs from the convolutional layer than there were pixels in the
original image!

• To make the number of values more manageable, a max pooling layer
can be used to downsample (reduce) the number of features.

• A max pooling layer acts like a convolutional layer, but without any
parameters.

• For each patch, it returns the maximum value within the patch.
• Other pooling layers (e.g., average pooling layers) compute other fixed functions

of a patch (e.g., the average value in the patch)
• A max pooling layer typically has a relatively wide stride and/or patch.

• For example, a 2x2 patch with no overlap between patches quarters the number of
values.

Flattening Layers

• Convolutional layers output values in a matrix.
• One matrix per filter

• Typical feed-forward layers expect values as a vector.
• Flattening layers convert the output of convolutional layers into

one long vector (rather than a set of matrices).
• Flattening layers have no tunable parameters, 𝑤𝑤.

Example from Online:
https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243

• Number of channels = number of filters
• Some concepts beyond the scope of this class (e.g., padding)
• This model has 10 outputs, one per digit (more on this when

we discuss classification)

Why 10 outputs?

Example from Online:
https://developersbreach.com/convolution-neural-network-deep-learning/

What is “softmax” doing here?

Example from Online:
https://www.researchgate.net/figure/The-architecture-of-standard-deep-CNN-CNN-std-
for-off-target-prediction-The-input-of_fig2_327641553

Note the softmax again!

Example from Online:
https://www.researchgate.net/figure/CNN-architecture-for-CIFAR-10-SVHN-The-
network-consists-of-three-convolution-layers-with_fig3_353568132

CNN architecture for CIFAR-10/SVHN: The network consists of three convolution layers with 3 × 3
filters, 0 padding and stride 1. The convolution layers are followed by a ReLU non-linearity. We use
max pooling in this work with a filter size of 2 × 2, no padding and stride 2 which results in a
downsampling of the features by a factor of 2. The three convolution layers have 6, 16 and 32 filters
respectively. Finally, a Global Average Pooling (GAP) is applied and a fully connected (fc) outputs
logits over the number of classes.

This refers to
the size of
each patch

Example from Online:
https://medium.com/analytics-vidhya/convolutional-neuronal-network-with-
keras-tuner-on-cifar-10-b4271ca4643d

Our old approach (manual derivation) is error prone
and can be specific to a network architecture

Chain Rule (Review)

𝑑𝑑𝑓𝑓 𝑔𝑔 𝑥𝑥
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑔𝑔 𝑥𝑥

𝑑𝑑𝑔𝑔 𝑥𝑥
𝑑𝑑𝑥𝑥

or

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑦𝑦

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

Chain Rule

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

 – How does changing 𝑥𝑥 change 𝑧𝑧?
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

 – How does changing 𝑥𝑥 change 𝑦𝑦?
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

 – How does changing y change 𝑧𝑧?

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑦𝑦

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

=2 (adding 𝜖𝜖 to 𝑥𝑥 increases 𝑦𝑦 by 2𝜖𝜖)

2

=3 (adding 𝜖𝜖 to 𝑦𝑦 increases 𝑧𝑧 by 3𝜖𝜖)

3

=6 (adding 𝜖𝜖 to 𝑥𝑥 increases 𝑧𝑧 by 6𝜖𝜖)

6

Chain Rule

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑑𝑑𝑧𝑧
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑧𝑧
𝑑𝑑𝑦𝑦

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

+
𝑑𝑑𝑧𝑧
𝑑𝑑𝑦𝑦′

𝑑𝑑𝑦𝑦′

𝑑𝑑𝑥𝑥

𝑦𝑦𝑦

2
3

𝟐𝟐 × 𝟑𝟑 + 𝟏𝟏 × 𝟓𝟓 = 𝟏𝟏𝟏𝟏
1 5

Expression Trees

• Math expressions like function definitions can be converted into
expression trees.

• Each internal node is a math operator.
• Each leaf node is a constant or variable.

• Example: 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

We write 𝑥𝑥𝑦 and 𝑥𝑥𝑦𝑦 so that we can talk about the two paths, 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥′

 and 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑𝑥𝑥′′

Automatic Differentiation

• Goal: Compute 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

, for some value of
𝑥𝑥

• Example: 𝑥𝑥 = 5
• Step 1: Run a “forwards pass”

• Evaluate the expression tree, computing
values from the bottom to the top.

• Step 2: Run a “backwards pass”
• Loop over nodes from the top to the

bottom.
• For each node, compute the derivative of
𝑓𝑓(𝑥𝑥) with respect to each input of the node.

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑐𝑐

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑎𝑎

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑏𝑏

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

Backwards Pass: Multiplication Node

• We want to compute 𝜕𝜕𝑓𝑓(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝑓𝑓(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑓𝑓(𝑥𝑥) with respect to (w.r.t.) the output out
of the multiplication function, ×.

• This is 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

• This was computed earlier in the backwards pass by the node
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

=

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in2

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

in1

×

in1 in2

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

in2

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out in2

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

in1

Backwards Pass: Addition Node

• We want to compute 𝜕𝜕𝑓𝑓(𝑥𝑥)/𝜕𝜕in1 and 𝜕𝜕𝑓𝑓(𝑥𝑥)/𝜕𝜕in2
• Assume that we know:

• The value of the inputs: in1 and in2
• These were computed during the forwards pass

• The derivative of 𝑓𝑓(𝑥𝑥) w.r.t. the output out of the addition
function, +.

• This is 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

• This was computed earlier in the backwards pass by the node
“above” the multiplication node.

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in1

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in2

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

+

in1 in2

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in1

= 1=
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

Backwards Pass: Exponent Node

• We want to compute 𝜕𝜕𝑓𝑓(𝑥𝑥)/𝜕𝜕in.
• Assume 𝑧𝑧 is a constant.
• Assume that we know:

• The value of the input in from the forwards pass
• The derivative of 𝑓𝑓(𝑥𝑥) w.r.t. the output out of the

exponentiation function, ⋅ 𝑑𝑑.
• This is 𝑑𝑑𝑑𝑑 𝑥𝑥

𝑑𝑑out
, as was computed previously in the backwards pass

• 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑in

= 𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

𝑑𝑑out
𝑑𝑑in

⋅𝑑𝑑

in

𝑓𝑓(𝑥𝑥)

𝑥𝑥

out

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

z𝑑𝑑𝑑𝑑 𝑥𝑥
𝑑𝑑out

in𝑑𝑑−1

=
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑out

× 𝑧𝑧 × in𝑑𝑑−1

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑐𝑐

= ?

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑎𝑎

= ?

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑎𝑎

= 1

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑏𝑏

= ?

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑎𝑎

= 1

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑏𝑏

= 3

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦 = ?

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑎𝑎

= 1

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑏𝑏

= 3

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦 = 3 × 2 × 5 = 30

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦𝑦 =?

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑎𝑎

= 1

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑏𝑏

= 3

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦 = 3 × 2 × 5 = 30

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦𝑦 = 2

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑥𝑥 = ?

𝑥𝑥

⋅2

×

23

+

×

𝑓𝑓(𝑥𝑥)

𝑥𝑥 = 5

𝑎𝑎 = 10

𝑏𝑏 = 25

𝑐𝑐 = 75

𝑑𝑑 = 85
Forwards Pass
Backwards Pass

Compute d𝑑𝑑
d𝑥𝑥

 for 𝑓𝑓 𝑥𝑥 = 3𝑥𝑥2 + 2𝑥𝑥 at 𝑥𝑥 = 5

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑐𝑐

= 1
𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑎𝑎

= 1

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑏𝑏

= 3

𝑥𝑥𝑦
𝑥𝑥𝑦𝑦

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦 = 3 × 2 × 5 = 30

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑥𝑥𝑦𝑦 = 2

𝑑𝑑𝑓𝑓 𝑥𝑥
𝑑𝑑𝑥𝑥 = 30 + 2 = 32

Automatic Differentiation
• Automatic differentiation tools take functions as input

• Typically these functions are implemented as code, e.g., python functions.
• They can then be used to take the derivative of the function with respect to

the arguments (inputs).
• There are several methods for automatic differentiation, with different pros

and cons.
• Forwards Mode Automatic Differentiation: Runs one forwards pass (no backwards

pass!). Computes the derivative of the output w.r.t. a single scalar input.
• Reverse Mode Automatic Differentiation: The strategy we have described.

• Requires a forward and backwards pass.
• Can compute the derivative with respect to all inputs with one forwards+backwards pass.
• This is most common for automatically differentiating ML models and loss functions.

• Others include symbolic differentiation (manipulating the mathematical expressions to
calculate expressions for the derivative) and finite difference methods (beyond the
scope of this course).

Autograd

Deep Learning Libraries

• There are many deep learning libraries that extend autograd to:
• Leverage low-level compiled code for faster runtimes.
• Enable forward and backwards passes on the GPU rather than CPU (more

on this later).
• Have built-in implementations of

• Common loss functions
• Common activation functions
• Common network layers

• Fully connected feed-forward
• Convolutional layers
• Pooling layers
• Etc.

Defining a Neural Network Architecture
Defining a Parametric Model
• Extend the nn.Module base class

• The base class provides functionality for tracking trainable parameters
(and their gradients), moving parameters to the GPU, saving and loading
models, etc.

• Implement two functions:
• __init__(self): Define the different layers (number of units, number

of inputs) and different activation functions that will be used.
• forward(self, x): Perform a forward pass on input 𝑥𝑥.

• You do not need to implement any gradients or the backwards
pass!

• PyTorch uses reverse mode automatic differentiation to automatically
compute gradients.

Note: This model is bigger than needed for the GPA prediction problem. This allows us to more easily compare
runtimes later, and to show a phenomenon called “overfitting”.

Loss Function
• PyTorch has many built-in loss functions, including MSE:

Optimizer
• PyTorch has many built-in loss optimizers, including gradient

descent (SGD), and Adam (SGD with a specific adaptive step size
method).

• Several optimizers are discussed in the Jupyter notebook.
• Adam is the most common, and what we will use.

Runtime
• My work desktop has an Intel i9-9900k with 16 cores (CPU).
• It also has an RTX 2070 GPU

• This has 2304 cores! (An RTX 4090 has 18,432 CUDA cores and 512 special
“Tensor” cores)

• These GPU cores are limited in comparison to CPU cores.
• No branch prediction
• Limited cache
• Shorter pipeline (typically)

• Slower clock (1.605 GHz vs 5 MHz)
• Not designed for parallel processing (many processes running at once)

• Designed to perform many simple operations like dot products
efficiently and in parallel

• These operations are useful for displaying graphics (e.g., applying simple
functions to each pixel on the screen between every frame, changing things like
lighting)

• They are also useful for ML! Running an ANN means computing a lot of dot
products (and some non-linearities).

Move the model back to the CPU if you will run it or manipulate it on the CPU (e.g., saving the
model/weights to a file). Leave on the GPU if you will only run it on the GPU.

Overfitting

• Recall that the training error for nearest neighbor (NN) was zero,
but the testing error was large.

• NN essentially “memorized” the training data, and gave good predictions
for the training data.

• The model did not generalize to new inputs: it had high errors for points
not in the training data.

• When this happens using parametric models, it is called
overfitting.

Plotting Training vs Testing Loss (General Case)

Testing loss

Training loss

Iteration or Epochs

Overfitting begins

Loss

Idea: Stop training when the
testing loss starts increasing.

Overfitting and Model Complexity/Capacity

• Notice that we can’t overfit this
data using a line!

• The model complexity or model
capacity refers to a parametric
model’s ability to represent
general functions.

• Models with higher
complexity/capacity can represent
more functions.

• Models with higher
complexity/capacity are more prone
to over-fitting.

Avoiding Over-Fitting (Overview of Strategies)

1. Early stopping: Stop training when testing error increases.
• Typically split data into training, validation, and testing
• Stop training when the error on the validation set begins to increase
• This ensures that the training process never looks at the testing data

2. Include a “regularization” term in the loss function
• Complete details are beyond the scope of this course.
• Regularization terms increase the loss the farther the weight vector is

from zero: 𝐿𝐿new 𝑤𝑤,𝐷𝐷 = 𝐿𝐿 𝑤𝑤,𝐷𝐷 + 𝜆𝜆‖𝑤𝑤‖
• Often using the L1 norm, 𝑤𝑤 = ∑𝑗𝑗 𝑤𝑤𝑗𝑗 or the L2 norm 𝑤𝑤 = ∑𝑗𝑗 𝑤𝑤𝑗𝑗2.

3. Other strategies (e.g., dropout)
4. Use a large network! ⋅ denotes a norm (a

notion of “length”)

“Use a large network”: Double Descent

• Large networks seem like they should be particularly prone to
overfitting.

• When trained sufficiently on large amounts of data, empirical
evidence suggests that deep (large) networks tend not to over-fit!

This phenomenon, called
double descent, is an
active research topic!

Regression Classification

• Two changes for parametric methods:
1. Change the parametric model so that it outputs a discrete label as a

prediction rather than a number
2. Select a loss function that is appropriate for classification tasks

• Note: Techniques differ for non-parametric methods
• E.g., we discussed nearest neighbor (and variants) for classification
• E.g., there are other custom non-parametric methods for classification

like decision trees, which are beyond the scope of this course.

• Terminology: Each possible value of the label is called a class

Parametric models for classification

• Assume 𝑚𝑚 classes (possible values of the label)
• Change parametric model to have 𝑚𝑚 outputs rather than one.
• Deterministic:

• Class with the highest output is the predicted class.
• Simple and effective
• Gradient of the loss function is typically zero, making this impractical for

training.

• Stochastic:
• The 𝑚𝑚 outputs are converted to a probability distribution over the classes, and

the label is sampled from this distribution.
• The larger the output, the higher the probability of the class being selected

Stochastic Models: Softmax

• The softmax function converts the 𝑚𝑚 outputs to a distribution
over the 𝑚𝑚 class values.

• Let out1, … , out𝑚𝑚 be the model outputs.
• Probabilities cannot be negative, so convert each output to a

positive value:
out1, … , out𝑚𝑚 eout1 , … , 𝑒𝑒out𝑚𝑚

• A probability distribution must sum to one, so divide each by the
sum:

Binary Classification

• Special case where 𝑌𝑌𝑖𝑖 ∈ 0,1 or 𝑌𝑌𝑖𝑖 ∈ −1,1
• Typically 1 is called the “positive class”

• Parametric models need only have one output, not 𝑚𝑚 = 2
• This output encodes the probability of the positive class.
• The probability of the negative class is 1 − Pr positive class .

• The output of the model must be scaled to [0,1].
• This can be done using the logistic function (sigmoid):

Loss Functions for Classification

• There are many loss functions for classification.
• You can make your own that is tailored to your problem!

• Cross-Entropy Loss (log loss) is the most common.

• The 1
𝑛𝑛

 is sometimes omitted (it makes no difference).

Logistic Regression

• Logistic regression uses the logistic model or logit model
• Essentially a linear parametric model for classification

• Use cross-entropy loss
• Equivalent to maximizing the “likelihood” of the data given the model.

𝜎𝜎 𝑤𝑤 ⋅ 𝜙𝜙 𝑋𝑋𝑖𝑖

Stochastic Deterministic Models

• During training often models are viewed as stochastic (minimizing
cross-entropy loss).

• If the model is highly confident of the class for an input, the output
for that class will be come large

• No matter how large it is, the resulting probability of the label will not be 1

• To enable models to make deterministic predictions, often models
are evaluated (and then deployed to make predictions for new
data) as deterministic models, even if they are trained as
stochastic models.

We saw another example of over-fitting, and
used early stopping to prevent it:

Evaluation Metric: Accuracy

• While relatively simple,
accuracy can be
misleading if the class
distribution is imbalanced.

• In this case, 96% accuracy is
decent!

Evaluation Metric: Confusion Matrix

• Accuracy doesn’t provide information about what kinds of errors
are common

• Which classes are often confused?

• The confusion matrix provides this information. It is a matrix with
one row per class and one column per class

• The 𝑖𝑖, 𝑗𝑗 th entry holds the probability that a row with actual class 𝑖𝑖 is
classified as class 𝑗𝑗.

• In some cases the matrix reports the number of errors of each type, rather
than the estimated probability.

Evaluation Metric: Confusion Matrix

• Accuracy doesn’t provide information about what kinds of errors
are common

• Which classes are often confused?

• The confusion matrix provides this information. It is a matrix with
one row per class and one column per class

• The 𝑖𝑖, 𝑗𝑗 th entry holds the probability that a row with actual class 𝑖𝑖 is
classified as class 𝑗𝑗.

• In some cases the matrix reports the number of errors of each type, rather
than the estimated probability.

Evaluation Metric: Precision, Recall, and F1 Score

• For binary classification tasks, statistics like precision, recall,
and the F1 score are often used to evaluate models.

• Note: These are often used even when the loss function used in training
measures something else, like cross-entropy loss.

• These metrics are expressed in terms of the following statistics:

Deterministic Classifiers

Stochastic Classifiers

F1 Score

• The F1 score (often written “F1 score”) combines precision and
recall:

• This is the harmonic mean of the precision and recall
• Places more weight on low values relative to the arithmetic mean

• F1 score ranges from 0 to 1, where 1 denotes perfect precision
and recall, and 0 means that either precision or recall is zero.

Example ROC Curve

• Curves closer to the top left
corner correspond to better
models.

• A classifier that ignores the
inputs and outputs a uniform
random number in [0,1]
results in a diagonal line from
(0,0) to (1,1)

Evaluation Metric: Area Under the ROC Curve
(AUC)
• The AUC summarizes the ROC curve with a single number: The

area under the ROC curve.
• The best possible value is 1.
• A pessimal model (one that always gets the prediction wrong)

would have an AUC of zero.
• The random classifier achieves an AUC of 0.5

Generative AI

• Generative AI methods create new content like text, images,
music, or other data, often mimicking some aspects of human
creativity.

• Generative AI is often (not always!) a form of unsupervised
learning (learning from data with no labels).

• When presented with a data set 𝐷𝐷 = 𝑋𝑋𝑖𝑖 𝑖𝑖=1
𝑛𝑛 , the agent’s goal is to create

new data points that are indistinguishable from the data in 𝐷𝐷.

• Two core methods in generative AI are variational autoencoders
(VAEs) and generative adversarial networks (GANs).

Variational Autoencoders (VAEs)

Generative Adversarial Networks (GANs)

Input (noise vector) Generator Fake Data

Fake Data, Label=0
Real Data, Label=1 Discriminator

Input (noise vector) Generator Fake Data

Input (noise vector) Generator Fake Data

Predictions

Classification Loss

Conditioning on Text

• VAEs and GANs can be conditioned on text.
• In a VAE, the text is first converted into its own embedding (numerical

vector representation)
• The text (represented as a vector of numbers) is then appended to the

input to the decoder.
• The encoder does not see the text – it just learns a representation for the image.
• The decoder is given the latent representation of the image and the text

description.
• To be effective, the distribution of the latent representation conditioned

on the text must still be normally distributed.
• Otherwise, when generating a new image, the latent representation of the image

that is sampled may not be compatible with the provided text query.
• Mechanisms for ensuring this are beyond the scope of this course.

Conditioning on Text

• To condition a GAN on text, the generator receives both the noise
and text embedding as input.

• Its goal is to generate an image that corresponds to the text embedding
that is indistinguishable from images and their corresponding text
embeddings in the training data.

• The discriminator also takes the text embedding into account.
• Its goal is to determine whether the image provided for the text

embedding corresponds to an image from the real data set or the fake
data set.

• Note: Both training VAEs and GANs that can be conditioned on
text requires training data containing both images and
corresponding text descriptions!

Large Language Models (LLMs)

• Large parametric models applied to text (or audio) generation.
• Input: A sequence of words, split into tokens

• A token is a sequence of letters/punctuation
• Often a token is a word or a part of a word

• Output: The next token
• Training: This is a standard classification problem!

• Generate input-output pairs from human-written text

Foundation Models

• Modern parametric ML models are expensive to train
• Instead of everyone training new models, large models can be

trained once and shared.
• These are called foundation models.
• Examples: GPT (OpenAI), BERT (Google), Llama (Meta), and many

others.
• Some can be found at https://huggingface.co/

Finetuning Models

• When using foundation models, often there is a need to change
the model in some way.

• Provide it with additional training data on a specific topic
• Change the tone of its responses
• Change it so that responses are more conversational
• Change it so that it excels at summarizing reviews
• …

• When a foundation model is further trained (often using a different
data set and loss function!), it is called fine-tuning.

Finetuning Models Efficiently

• Even finetuning a large model can be infeasible without significant
hardware and funding.

• One area of research involves finding more efficient ways to
finetune models.

• Example: Low Rank Adaptation (LoRA)
• Focusses on changing weights in a section of the network (attention and

feed-forward parts of a transformer).
• Uses low-rank matrices to represent the change to the weights.

• This is a way of using a small number of weights to tune a larger number of weights
• If there are 𝑚𝑚 × 𝑛𝑛 weights 𝑊𝑊, we tune two matrices 𝐴𝐴 and 𝐵𝐵 of sizes 𝑚𝑚 × 𝑘𝑘 and 𝑘𝑘 ×
𝑛𝑛, where 𝑘𝑘 is relatively small. The change to weights 𝑊𝑊 is then 𝐴𝐴𝐵𝐵.

Executing Models Efficiently

• Running (not just training!) large parametric models can also be
expensive.

• Another area of research focusses on making the execution of
large models more efficient

• Examples:
• Model pruning: Finding unimportant weights and parameters that can be

removed.
• Quantization: Reducing weights from 32 bits to 8 bits.
• Knowledge Distillation: Train a smaller model to mimic the outputs of a

larger pre-trained model.

End

	COMPSCI 389�Introduction to Machine Learning
	What is machine learning (ML)?
	ML is a subfield of AI
	Data & Supervised Learning
	Data Set Notation
	Feature Types
	Feature Types
	Regression and Classification
	Nearest Neighbor
	Evaluation Metrics (Regression)
	Evaluation Metrics (Regression, cont.)
	𝑘-Nearest Neighbors (k-NN)
	Weighted 𝑘-Nearest Neighbor
	Gaussian Kernel
	Tuning Hyperparameters
	Tuning Hyperparameters
	Train/Validation/Test Sets
	Classification with NN-Variants
	Mean Squared Error (revisited)
	Confidence Interval
	Standard Error
	Using Standard Error
	Mean Squared Error (re-revisited)
	Slide Number 24
	Model Evaluation (Review)
	Algorithm Evaluation (Ideal)
	Cross-Validation
	Slide Number 28
	Slide Number 29
	K-Fold Cross-Validation Pseudocode
	Leave-One-Out (LOO) Cross-Validation
	Linear Regression
	Linear Regression: What is a line?
	Models (Review)
	Parametric Model
	Linear Regression: Optimization Perspective
	Linear Regression: Optimization Perspective
	Linear Parametric Model ≠Linear Functions
	Linear Parametric Model ≠Linear Functions
	Multivariate Polynomial Basis
	Fourier Basis
	Parametric vs Nonparametric
	Optimization Perspective
	Local Search Methods
	“Find a nearby point that decreases 𝑓”
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Gradient Descent
	Gradient descent, 𝑥 0 =7, 𝛼=0.001�𝑓 𝑥 = 𝑥 4 −14 𝑥 3 +60 𝑥 2 −70𝑥
	The Gradient (multi-dimensional setting)
	Pseudocode: Gradient Descent on 𝑓(𝑥)
	Pseudocode: Gradient Descent on 𝑓(𝑥)
	Manual derivation of gradient
	Missing Data
	One Hot Encoding
	Feature Scaling
	Feature Scaling
	Question: How can we make this model non-linear w.r.t. the model parameters (weights 𝑤)?
	Answer: One way is to apply a non-linear function, 𝜎, to the output.
	Perceptron
	Slide Number 62
	Neural Networks: Parametric Models Comprised of Many Perceptrons
	Neural Network Graphical Depiction
	Neural Network (Graphical Depiction)
	Neural Network (Graphical Depiction)
	Neural Network (Graphical Depiction)
	Neural Network (Graphical Depiction)
	Neural Network (Graphical Depiction)
	Activation Function: Sigmoid
	Activation Function: Hyperbolic Tangent Function (tanh)
	Activation Function: Rectified Linear Unit (ReLU)
	Activation Function: Leaky ReLU
	Fully-Connected Feed-Forward Networks
	Recurrent Neural Network (RNN)
	Skip Connections
	What do different layers learn?
	Learning Low-Level Features
	Convolutional Layer
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Convolutional Layer (Graphical Depiction)
	Convolutional Layer
	Convolutional Layer
	Max Pooling Layers
	Flattening Layers
	Example from Online:�https://medium.com/@draj0718/convolutional-neural-networks-cnn-architectures-explained-716fb197b243
	Example from Online:�https://developersbreach.com/convolution-neural-network-deep-learning/
	Example from Online:�https://www.researchgate.net/figure/The-architecture-of-standard-deep-CNN-CNN-std-for-off-target-prediction-The-input-of_fig2_327641553
	Example from Online:�https://www.researchgate.net/figure/CNN-architecture-for-CIFAR-10-SVHN-The-network-consists-of-three-convolution-layers-with_fig3_353568132
	Example from Online: �https://medium.com/analytics-vidhya/convolutional-neuronal-network-with-keras-tuner-on-cifar-10-b4271ca4643d
	Slide Number 98
	Our old approach (manual derivation) is error prone and can be specific to a network architecture
	Chain Rule (Review)
	Chain Rule
	Chain Rule
	Expression Trees
	Automatic Differentiation
	Backwards Pass: Multiplication Node
	Backwards Pass: Addition Node
	Backwards Pass: Exponent Node
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Automatic Differentiation
	Autograd
	Deep Learning Libraries
	Defining a Neural Network Architecture�Defining a Parametric Model
	Slide Number 120
	Loss Function
	Slide Number 122
	Runtime
	Slide Number 124
	Overfitting
	Plotting Training vs Testing Loss (General Case)
	Overfitting and Model Complexity/Capacity
	Avoiding Over-Fitting (Overview of Strategies)
	“Use a large network”: Double Descent
	Regression Classification
	Parametric models for classification
	Stochastic Models: Softmax
	Binary Classification
	Loss Functions for Classification
	Logistic Regression
	Stochastic Deterministic Models
	We saw another example of over-fitting, and used early stopping to prevent it:
	Evaluation Metric: Accuracy
	Evaluation Metric: Confusion Matrix
	Evaluation Metric: Confusion Matrix
	Evaluation Metric: Precision, Recall, and F1 Score
	Deterministic Classifiers
	F1 Score
	Example ROC Curve
	Evaluation Metric: Area Under the ROC Curve (AUC)
	Generative AI
	Variational Autoencoders (VAEs)
	Generative Adversarial Networks (GANs)
	Conditioning on Text
	Conditioning on Text
	Large Language Models (LLMs)
	Foundation Models
	Finetuning Models
	Finetuning Models Efficiently
	Executing Models Efficiently
	End

